最新一段时间一直在学习LangChain相关的文档,发现LangChain提供了非常丰富的生态,并且也可以让业务非常方便的封装自己的工具,接入到LangcChain的生态中,比如切换不同向量存储(Vectorstores)、文件分片(Text Splitters)和文件加载器(Document Loaders)等。 本文将简单介绍下如何将自己搭建的ChatGLM
集成进LangChain工具链中,当然如果有其他的自己搭建的LLM模型也可以采用类似的方式集成。
接入自己的LLM
参考官方文档# How to write a custom LLM wrapper,只需要集成LLM
方法,并且实现_call
方法即可。一个简单的自定义LLM如下:
from langchain.llms.base import LLM
from typing import Optional, List, Mapping, Any
class CustomLLM(LLM):
n:int
@property
def _llm_type(self) -> str:
return "custom"
def _call(self,prompt:str,stop:Optional[List[str]]=None) -> str:
if stop is not None:
raise ValueError("stop kwargs are not permitted")
return prompt[:self.n]
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {"n": self.n}
上面虽然只是一个最简单的实现,但是进一步思考,如果有自己的LLM,是不是也可以通过类似的方式接入到LangChain的生态中呢?
正好最近也在搭建ChatGLM,于是在想是不是可以将ChatGLM加入到LangChain工具链中来,利用其提供的工具方便做更深入的研究。于是搜索了一番,果然有类似开源实现,比如thomas-yanxin/LangChain-ChatGLM-Webui,一种利用 ChatGLM-6B + langchain 实现的基于本地知识的 ChatGLM 应用。但是研究了一下代码,发现其是将ChatGLM-6B和LangChain部署在一起的。但是由于资源有限,目前只有少量的显卡,不能每个人都能部署一套ChatGLM。
进一步思考,是否ChatGLM也提供了类似于openai的api接口呢,只需要进行http调用就可以使用ChatGLM的能力?这样就可以将:ChatGLM和上层的应用解耦,每个人都可以在自己本地通过api调用来进行实验。
搭建ChatGLM的api
查阅ChatGLM-6B文档,也发现了其确实可以通过API方式提供服务。 具体如下:
- 首先需要安装额外的依赖
pip install fastapi uvicorn
,然后运行仓库中的 api.py:python api.py
- 默认部署在本地的 8000 端口,通过 POST 方法进行调用
curl -X POST "http://{your_host}:8000" \
-H 'Content-Type: application/json' \
-d '{"prompt": "你好", "history": []}'
- 得到的返回值为
{
"response":"你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。",
"history":[["你好","你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。"]],
"status":200,
"time":"2023-03-23 21:38:40"
}
封装ChatGLM的LLM
有了API之后,就可以参照上面的自定义LLM的方式封装ChatGLM了,具体代码如下:
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from typing import Dict, List, Optional, Tuple, Union
import requests
import json
class ChatGLM(LLM):
max_token: int = 10000
temperature: float = 0.1
top_p = 0.9
history = []
def __init__(self):
super().__init__()
@property
def _llm_type(self) -> str:
return "ChatGLM"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
# headers中添加上content-type这个参数,指定为json格式
headers = {'Content-Type': 'application/json'}
data=json.dumps({
'prompt':prompt,
'temperature':self.temperature,
'history':self.history,
'max_length':self.max_token
})
# print("ChatGLM prompt:",prompt)
# 调用api
response = requests.post("{your_host}/api",headers=headers,data=data)
# print("ChatGLM resp:",response)
if response.status_code!=200:
return "查询结果错误"
resp = response.json()
if stop is not None:
response = enforce_stop_tokens(response, stop)
self.history = self.history+[[None, resp['response']]]
return resp['response']
上面只是简单的调用ChatGLM API,让程序跑起来,当然也可以参照LangChain封装openai的方式来做更加复杂的封装,比如提供重试、限频退让重试等功能。
测试
llm = ChatGLM()
print(llm("你会做什么"))
输出如下:
ChatGLM prompt: 你会做什么
我是一个大型语言模型,被训练来回答人类提出的问题。我不能做任何实际的事情,只能通过文字回答问题。如果你有任何问题,我会尽力回答。
验证通过,可以通过封装的ChatGLM
类来访问ChatGLM API
。这样就可以将需要用到OpenAI
的LLM
类替换成自己封装的ChatGLM
了。
总结
本文简单介绍下如何将自己搭建的ChatGLM
集成进LangChain工具链中,并且进行简单的试验的效果。当然如果有其他自己搭建的LLM模型也可以采用类似的方式集成。后续将使用ChatGLM
来实现一个本地知识库做问答系统。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费
】
