大模型LLMs概述:利用大模型 (LLMs) 解决信息抽取任务

大模型IE应用与学习

在这里插入图片描述

论文标题:Large Language Models for Generative Information Extraction: A Survey

论文链接:https://arxiv.org/pdf/2312.17617.pdf

论文主要探讨了大型语言模型(LLMs)在生成式信息抽取(IE)任务中的应用,并对这一领域的最新进展进行了全面系统的回顾。

摘要

信息抽取(IE)是自然语言处理(NLP)中的一个重要领域,它将文本转换为结构化知识。随着大型语言模型(如GPT-4和Llama)的出现,它们在文本理解和生成方面展现出了卓越的能力,使得跨领域和任务的泛化成为可能。因此,越来越多的研究开始利用LLMs的生成能力来解决IE任务,而不是从文本中提取结构化信息。这些方法在实际应用中更加实用,因为它们能够有效处理包含数百万实体的模式,而不会显著降低性能。

1. 引言

信息抽取(IE)是将文本转换为结构化知识的过程,对于知识图谱构建、知识推理和问答系统等下游任务至关重要。LLMs的出现极大地推动了NLP的发展,因为它们在文本理解和生成方面的能力非常出色。因此,研究者们对采用LLMs进行生成式IE方法的兴趣日益增长。

图片

2. 生成式IE的初步知识

在这部分,论文介绍了生成式IE的定义和目标,包括命名实体识别(NER)、关系抽取(RE)和事件抽取(EE)等子任务。这些任务被以生成式的方式制定,即使用一个提示(prompt)来增强LLMs对任务的理解,并生成相应的提取序列。

3. IE任务

在这一部分,论文详细介绍了信息抽取(IE)的三个主要子任务:命名实体识别(NER)、关系抽取(RE)和事件抽取(EE),并对每种任务的代表性模型和方法进行了概述。

图片

3.1 命名实体识别(NER)

命名实体识别是IE的一个关键组成部分,它涉及识别文本中的实体(如人名、地点、组织等)及其类型。论文讨论了几种不同的NER方法,包括基于规则的方法、统计方法和基于深度学习的方法。特别地,论文提到了使用大型语言模型(LLMs)进行NER的几种策略,例如通过添加额外的提示(prompts)来增强任务的可理解性。

图片

3.2 关系抽取(RE)

关系抽取在IE中也扮演着重要角色,它通常有不同的设置,如关系分类、关系三元组和关系严格。论文分类了RE的不同设置,并介绍了各种方法,包括基于规则的方法、机器学习方法和基于LLMs的方法。这些方法旨在识别和分类实体之间的关系。

图片

3.3 事件抽取(EE)

事件抽取涉及识别和分类文本中的事件触发词和类型,以及提取与事件相关的论元。论文讨论了事件检测和事件论元提取两个子任务,并介绍了一些基于LLMs的方法,这些方法在事件抽取任务上取得了显著的性能提升。

图片

3.4 通用信息抽取(UIE)

论文还探讨了通用信息抽取(UIE)框架,这些框架旨在同时处理多个IE子任务。这些框架通常采用自然语言(NL-LLMs)或代码语言(Code-LLMs)的形式。NL-LLMs通过自然语言提示来统一所有IE任务,而Code-LLMs则利用编程语言的特性来生成代码,以处理结构化预测任务。

图片

4. 学习范式

在这一部分,论文对使用LLMs进行IE的各种学习范式进行了分类,包括有监督微调、少样本学习、零样本学习和数据增强。

4.1 有监督微调(Supervised Fine-tuning)

有监督微调是将预训练的LLMs进一步训练在特定的IE任务上,使用标注数据来提高模型的性能。这种方法允许模型学习到数据中的具体结构模式,并能够更好地泛化到未见过的任务。论文中提到了几种微调策略,例如结构预训练,它通过在一系列任务无关的语料库上预训练模型来增强其结构理解能力。此外,还有目标蒸馏和任务聚焦指令调整,这些方法通过训练学生模型来实现广泛的应用,如命名实体识别(NER)。

4.2 少样本学习(Few-shot Learning)

少样本学习是指在只有少量标注示例的情况下进行模型训练。这种方法面临的挑战包括过拟合和难以捕捉复杂关系。然而,通过增加LLMs的参数规模,它们展现出了惊人的泛化能力,即使在少样本设置中也能取得优异的性能。论文中提到了几种创新方法,如翻译增强自然语言框架(Translation between Augmented Natural Languages framework)、文本到结构生成框架(text-to-structure generation framework)和协作领域前缀调整(Collaborative Domain-Prefix Tuning),这些方法在少样本微调中取得了最先进的性能。

4.3 零样本学习(Zero-shot Learning)

零样本学习是指在没有特定IE任务的训练示例的情况下进行预测。这种方法的主要挑战在于使模型能够有效地泛化到未见过的任务和领域,以及对LLMs的预训练范式进行对齐。由于LLMs嵌入了大量的知识,它们在零样本场景中展现出了惊人的能力。论文中讨论了如何通过引入创新的训练提示(如指令和指南)来实现零样本跨域泛化。此外,还提到了跨类型泛化,即模型能够处理不同类型的任务,例如将事件抽取任务转化为条件生成问题。

4.4 数据增强(Data Augmentation)

数据增强涉及使用LLMs生成有意义的多样化数据,以增强现有数据。这种方法可以分为三种策略:数据注释、知识检索和逆向生成。数据注释策略直接使用LLMs生成标注数据,知识检索策略从LLMs中检索相关信息,而逆向生成策略则根据结构化数据生成自然文本或问题。这些策略各有优势和局限性,例如数据注释可以直接满足任务要求,但LLMs的结构化生成能力仍需改进;知识检索可以提供关于实体和关系的额外信息,但可能会引入噪声;逆向生成与LLMs的问答范式相一致,但需要结构化数据,并且生成的对之间存在领域差距。

图片

5. 特定领域

论文还探讨了LLMs在特定领域(如多模态、科学、医学等)的应用,并评估了LLMs在IE任务上的性能。

6. 评估与分析

这部分介绍了一些研究,它们探索了LLMs在IE任务上的能力和性能,包括对多个IE子任务的全面分析。

7. 未来方向

最后,论文提出了未来研究的可能方向,包括开发更灵活的通用IE框架、探索在资源有限场景下的IE系统、优化IE的提示设计,以及在开放IE设置中进一步探索LLMs的潜力。

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

### 非结构化数据大模型分析报告 #### 一、非结构化数据概述 非结构化数据格式多样,标准具有多样性,在技术上比结构化信息更难标准化和理解。存储、检索、发布以及利用需要更加智能化的 IT 技术,如海量存储、智能检索、知识挖掘、内容保护、信息的增值开发利用等 [^2]。目前国内大数据中心在完成结构化数据归集后,已开始进行非结构化数据处理工作,且工作量大、任务艰巨,像北京、上海、浙江、贵州和广州等地的大数据中心已进入第二期非结构化数据处理阶段 [^1]。 #### 二、大模型数据集情况 当前已经出现一批大模型数据集,涵盖多种模态。代表性的数据集既包括 ALIGN、VAST - 27M、WebVid - 2.5M 等多模态数据集,还包括 BookCorpus、Common Crawl、HH - RLHF 等语言大模型数据集 [^3]。 #### 三、技术应用案例 以车辆图像结构化数据抽取为例,使用了 GPT - 4 视觉模型和 LangChain 等技术。GPT - 4 是由 OpenAI 开发的多模态模型,能理解文本和图像,经过大量多模态数据的训练,可零样本推广到各种任务,通常无需微调,可通过 OpenAI API 以付费代币方式获得。LangChain 是一个功能强大的框架,可简化复杂的工作流程,确保代码的一致性,并可轻松在 LLM 模型之间切换,在该案例中帮助链接加载图像、生成提示、调用 GPT 模型以及将输出解析为结构化数据的步骤。同时还使用 Pydantic 这个功能强大的 Python 数据验证库来定义 GPT - 4 模型预期输出的结构,确保输出一致且易于使用 [^5]。 以下是一个简单的示例代码(假设部分代码逻辑): ```python import openai from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from pydantic import BaseModel # 假设配置 OpenAI API 密钥 openai.api_key = "your_api_key" # 定义输出结构 class VehicleInfo(BaseModel): make: str model: str color: str # 初始化 LangChain 的 LLM llm = OpenAI(model_name="gpt-4") # 定义提示模板 prompt = PromptTemplate( input_variables=["image_description"], template="请从以下车辆图像描述 {image_description} 中提取车辆的品牌、型号和颜色信息。" ) # 示例图像描述 image_description = "一辆蓝色的丰田卡罗拉停在路边。" # 生成提示 formatted_prompt = prompt.format(image_description=image_description) # 调用模型 response = llm(formatted_prompt) # 解析输出 try: vehicle_info = VehicleInfo.parse_raw(response) print(vehicle_info) except Exception as e: print(f"解析输出时出错: {e}") ``` #### 四、应用场景 1. **智能安防**:视频结构化技术在智能安防领域应用广泛。通过结构化处理,原本复杂的非结构化视频数据得以转化为易于管理和利用的信息,为智能安防的数字化和智能化发展提供了有力支持 [^4]。 2. **其他潜在场景**:在金融领域,可对新闻报道、研报等非结构化文本数据进行分析,辅助投资决策;在医疗领域,对病历、医学影像等非结构化数据进行挖掘,助力疾病诊断和研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值