Python人工智能遗传算法示例解析

本文旨在介绍遗传算法的原理和应用,通过Python实现解决函数优化问题。详细讲解实验目的、基本思想,以及所需的Python环境。通过对参数的调整,观察遗传算法如何影响优化结果,展示遗传算法在计算机科学中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


在这里插入图片描述

一、实验目的

熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解流程并测试主要参数对结果的影响。

二、实验原理

遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程。它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体。这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和个体组成的群体。后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程,群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解。

三、实验条件

Python3,Anaconda3,PyCharm

四、实验内容

import matplotlib.pyplot as plt
import random
import math
#计算函数
def f(args):
    return f2(args)
def f1(args):
    return (3 - (math.sin(2\*args\[0\]))\*\*2 - (math.sin(2\*args\[1\]))\*\*2)
def f2(args):
    x = 1
    for i in range(len(args)):
        z = 0
        for j in range(5):
            z += (j+1) \* math.cos(((j+1)+1)\*args\[i\]+(j+1))
        x \*= z
    return x
#适应函数
def s(x):
    return s2(x)
def s1(x):
    return math.exp(-abs(x-1))
def s2(x):
    return math.exp(-abs(x+187))
# 计算2进制序列代表的数值
'''
解码并计算值
group 染色体
chrom\_length 染色体长度
max\_value, min\_value 上下限
div 分界点
'''
def b2d(b, chrom\_length, max\_value, min\_value, div):
    rwno = \[\]
    #因为染色体里面有多个变量,所以需要div来分割
    for i in range(len(div)):
        if i == 0:
            star = 0
            end = div\[i\]
        else:
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值