'''这种算法是针对 SLFNs (即含单个隐藏层的前馈型神经网络)的监督型学习算法, 其主要思想是:输入层与隐藏层之间的权值参数,以及隐藏层上的偏置向量参数是 once for all 的(不需要像其他基于梯度的学习算法一样通过迭代反复调整刷新), 求解很直接,只需求解一个最小范数最小二乘问题(最终化归成求解一个矩阵的 Moore-Penrose 广义逆问题)。''' #class hpelm.elm.ELM(inputs, outputs, classification='', w=None, batch=1000, accelerator=None, precision='double', norm=None, tprint=5) #coding:utf-8 from __future__ import division from pylab import* from sklearn.svm import SVR mpl.rcParams['font.sans-serif']=['SimHei'] mpl.rcParams['axes.unicode_minus']=False from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split import numpy as np import math import csv from sklearn import metrics import csv from pylab import* mpl.rcParams['font.sans-serif']=['SimHei'] mpl.rcParams['axes.unicode_minus']=False from sklearn.ensemble import RandomForestRegressor from hpelm import ELM from sklearn import preprocessing from sklearn.preprocessing import MinMaxScaler from keras import metrics from sklearn.preprocessing import
Python 实现极限学习机(预测)
最新推荐文章于 2025-03-16 14:40:06 发布