Description:
m
m
个操作,个位置,每个操作会随机选一个位置加上
[0,c]
[
0
,
c
]
中的随机值,问期望最大值。
Soution:
f[i][S][j]
f
[
i
]
[
S
]
[
j
]
表示第
i
i
个人操作集合为,最大值为
j
j
的概率,为前
i
i
个人操作集合为,最大值为
j
j
<script type="math/tex" id="MathJax-Element-121">j</script>的概率,转移一下即可。
#include <bits/stdc++.h>
using namespace std;
const int P = 1e9 + 7;
int n, m;
long long ans;
long long p[44][44][44], dp[44][1 << 11][44], f[1 << 11][44];
long long power(long long x, long long t) {
long long ret = 1;
for(; t; t >>= 1, x = x * x % P) {
if(t & 1) {
ret = ret * x % P;
}
}
return ret;
}
int main() {
scanf("%d%d", &n, &m);
for(int k = 1; k <= 3; ++k) {
for(int i = 0; i < m; ++i) {
for(int j = 1; j <= n; ++j) {
scanf("%lld", &p[j][i][k]);
}
}
}
dp[0][(1 << m) - 1][0] = 1;
for(int i = 1; i <= n; ++i) {
memset(f, 0, sizeof(f));
f[0][0] = 1;
for(int S = 0; S < 1 << m; ++S) {
int c = __builtin_popcount(S);
for(int j = 0; j < m; ++j) {
if(S >> j & 1) {
break;
}
for(int k = c; k <= 3 * c; ++k) {
for(int d = 1; d <= 3; ++d) {
f[S ^ (1 << j)][k + d] = (f[S ^ (1 << j)][k + d] + f[S][k] * p[i][j][d] % P) % P;
}
}
}
}
for(int S = 0; S < 1 << m; ++S) {
int c = m - __builtin_popcount(S);
for(int j = 0; j <= 3 * c; ++j) {
for(int S0 = S; ; S0 = (S0 - 1) & S) {
int lim = __builtin_popcount(S0);
for(int k = lim; k <= 3 * lim; ++k) {
dp[i][S ^ S0][max(j, k)] = (dp[i][S ^ S0][max(j, k)] + dp[i - 1][S][j] * f[S0][k] % P) % P;
}
if(!S0) {
break;
}
}
}
}
}
for(int i = 0; i <= 3 * m; ++i) {
ans = (ans + dp[n][0][i] * i % P) % P;
}
printf("%lld\n", ans * power((int)1e6 , 1LL * (P - 2) * m) % P);
return 0;
}