Description:
求∑ni=1∑nj=1,j!=iC(ai+aj+bi+bj,ai+aj)∑i=1n∑j=1,j!=inC(ai+aj+bi+bj,ai+aj)
Solution:
这个式子很像网格图中的路径方案数,等于从(−ai,−bi)(−ai,−bi)走到(aj,bj)(aj,bj)的方案数
那么答案就是所有(ai,aj)(ai,aj)为终点的方案数,把所有起点dpdp值赋为11,一下即可。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int base = 2001, maxn = 4005, P = 1e9 + 7;
int n;
ll ans;
int a[200005], b[200005];
ll dp[maxn][maxn], inv[maxn * 2], facinv[maxn * 2], fac[maxn * 2];
ll C(int n, int m) {
return fac[n] * facinv[m] % P * facinv[n - m] % P;
}
int main() {
scanf("%d", &n);
for(int i = 1; i <= n; ++i) {
scanf("%d%d", &a[i], &b[i]);
++dp[-a[i] + base][-b[i] + base];
}
for(int i = 1; i < maxn; ++i) {
for(int j = 1; j < maxn; ++j) {
dp[i][j] = (dp[i][j] + dp[i - 1][j] + dp[i][j - 1]) % P;
}
}
for(int i = 1; i <= n; ++i) {
ans = (ans + dp[a[i] + base][b[i] + base]) % P;
}
fac[0] = fac[1] = inv[0] = inv[1] = facinv[0] = facinv[1] = 1;
for(int i = 2; i < 2 * maxn; ++i) {
inv[i] = (P - P / i) * inv[P % i] % P;
facinv[i] = facinv[i - 1] * inv[i] % P;
fac[i] = fac[i - 1] * i % P;
}
for(int i = 1; i <= n; ++i) {
ans = ((ans - C(2 * a[i] + 2 * b[i], 2 * a[i])) % P + P) % P;
}
printf("%lld\n", ans * inv[2] % P);
return 0;
}