rknn-toolkit onnx转rknn报错

本文介绍了一个从ONNX格式模型转换为RKNN格式过程中遇到的问题及可能的原因。作者尝试加载并转换一个deeplabv3模型,但在转换过程中遇到了关于模型版本和输入层属性的错误。

代码如下

from rknn.api import RKNN  
 
INPUT_SIZE = 64
 
if __name__ == '__main__':
    # 创建RKNN执行对象
    rknn = RKNN()
    # 配置模型输入,用于NPU对数据输入的预处理
    # channel_mean_value='0 0 0 255',那么模型推理时,将会对RGB数据做如下转换
    # (R - 0)/255, (G - 0)/255, (B - 0)/255。推理时,RKNN模型会自动做均值和归一化处理
    # reorder_channel=’0 1 2’用于指定是否调整图像通道顺序,设置成0 1 2即按输入的图像通道顺序不做调整
    # reorder_channel=’2 1 0’表示交换0和2通道,如果输入是RGB,将会被调整为BGR。如果是BGR将会被调整为RGB
    #图像通道顺序不做调整
    rknn.config(channel_mean_value='0 0 0 255', reorder_channel='0 1 2')
 
    # 加载TensorFlow模型
    # tf_pb='digital_gesture.pb'指定待转换的TensorFlow模型
    # inputs指定模型中的输入节点
    # outputs指定模型中输出节点
    # input_size_list指定模型输入的大小
    print('--> Loading model')
    # rknn.load_tensorflow(tf_pb='digital_gesture.pb',
    #                      inputs=['input_x'],
    #                      outputs=['probability'],</
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值