传热问题的MATLAB计算与分析
1. 管道法兰的热损失计算
管道通常通过将两端相同的法兰用螺栓连接起来。在计算管道法兰的热损失时,由于两个法兰是对称的,我们可以只考虑一个法兰,其热损失来自一个暴露的圆形面和暴露的边缘。
热传递速率可以表示为半径 (r) 的函数。在内表面 (r = R_1) 处,温度保持为流体温度 (T_0);在 (r = R_2) 处,温度由表面与环境温度 (T_a) 之间的热对流决定。
热平衡方程为:
[
\frac{dT}{dr}=-\frac{q}{k}, \frac{d}{dr}(rq)=-\frac{hr}{B}(T - T_a), q = \frac{rq}{r}
]
初始和边界条件为:
[
T|
{r = R_1}=T_0, (rq)|
{r = R_2}=R_2h(T|
{r = R_2}-T_a)
]
热通量 (q_r) 由 (q_r = 2\pi rBq) 给出。为了确定温度分布和热损失通量 (q),需要确定 (rq) 的初始条件,以满足边界条件。这可以通过定义一个非线性方程来实现:
[
f((rq)|
{r = R_2})=(rq)|
{r = R_2}-R_2h(T|
{r = R_2}-T_a)=0
]
下面是一个具体的例子,考虑由两个铝法兰组成的连接。计算单个法兰的总热损失通量 (q),并绘制热传递速率 (q_r) 与半径 (r) 的关系图。已知平均环境温度 (T_a = 60°F),铝管和法兰的热导率 (k = 133 Btu/(hr·ft·°F)),法兰厚度 (B = 1 in.),(R_1 = 0.0833 ft),(R_2 = 0.25 ft),管内流体温度 (T_0 = 260°F),与周围环境的传热系数 (h = 3 Btu/(hr·ft^2·°F))。
以下是实现该计算的MATLAB代码:
function dy = funQL(r,y,Ta,k,h,B)
q = y(2)/r;
dy(1) = -q/k; dy(2) = -h*r*(y(1)-Ta)/B;
dy = dy';
end
% bisecQL.m: calculation of heat loss from pipe flange
clear all;
T0 = 260; Ta = 60; R1 = 0.0833; R2 = 0.25; B = 0.5/12; k = 133; h = 3;
qa = 200; qb = 800; % assume initial range for heat loss flux
feps = 1e-3; ferr = 1e3; iter = 1;
while ferr > feps
qm = (qa+qb)/2; % midpoint of the assumed temperature range
[r,ya] = ode45(@funQL,[R1 R2],[T0 qa],[],Ta,k,h,B);
[r,yb] = ode45(@funQL,[R1 R2],[T0 qb],[],Ta,k,h,B);
[r,ym] = ode45(@funQL,[R1 R2],[T0 qm],[],Ta,k,h,B);
fa = ya(end,2) - R2*h*(ya(end,1)-Ta);
fb = yb(end,2) - R2*h*(yb(end,1)-Ta);
fm = ym(end,2) - R2*h*(ym(end,1)-Ta);
if (fa*fm) < 0, qb = qm;
else qa = qm; end
ferr = abs(qb - qa); iter = iter+1;
end
Qr = ym(:,2)./r; T = ym(:,1); qrate = 2*pi*ym(:,2)*B;
subplot(1, 2)
plot(r,qrate), xlabel('r(ft)'), ylabel('q(Btu/hr)'), grid, axis tight;
subplot(1, 2), plot(r,T), xlabel('r(ft)'), ylabel('T(F)'), grid;
fprintf('Number of iterations: %d, heat transfer rate at r=R2 (Btu/h): %g\n',
iter, qrate(end))
fprintf('T at r=R2 (K): %g\n', T(end))
运行上述代码后,得到迭代次数为21,在 (r = R_2) 处的热传递速率为 (38.602 Btu/h),(r = R_2) 处的温度为 (256.599 K)。
2. 多维热传导
2.1 非稳态热传导
对于固体中的热传导,速度项为零,温度分布可以用三维非稳态热传导方程表示:
[
\rho C_p\frac{\partial T}{\partial t}=k\left(\frac{\partial^2 T}{\partial x^2}+\frac{\partial^2 T}{\partial y^2}+\frac{\partial^2 T}{\partial z^2}\right)
]
二维非稳态热传导方程可以表示为:
[
\frac{\partial T}{\partial t}=\alpha\left(\frac{\partial^2 T}{\partial x^2}+\frac{\partial^2 T}{\partial y^2}\right)
]
其中 (\alpha = \frac{k}{\rho C_p})。与偏微分方程相关的初始和边界条件可以分为以下几类:
-
狄利克雷条件(第一类)
:在自变量的固定值处给出因变量的值。例如:
[
T|
{t = 0}=f(x), 0\leq x\leq 1
]
或
[
T|
{t = 0}=T_0, 0\leq x\leq 1
]
边界条件可以写成:
[
T|
{x = 0}=f(t), t > 0; T|
{x = 1}=T_1, t > 0
]
-
诺伊曼条件(第二类)
:因变量的导数作为常数或自变量的函数给出。例如:
[
\frac{\partial T}{\partial x}|
{x = 1}=0, t\geq 0
]
-
柯西条件
:狄利克雷条件和诺伊曼条件的组合。
-
罗宾斯条件(第三类)
:因变量的导数作为因变量本身的函数给出。例如:
[
k\frac{\partial T}{\partial x}|
{x = 0}=h(T - T_f), t\geq 0
]
2.2 线方法
在线方法中,除了时间导数外,仅使用有限差分对空间导数进行离散化。对于一维抛物方程 (\frac{\partial u}{\partial t}=\alpha\frac{\partial^2 u}{\partial x^2}),仅对空间导数项进行离散化得到:
[
\frac{du_i}{dt}=\frac{\alpha}{\Delta x^2}(u_{i + 1}-2u_i+u_{i - 1})
]
对于 (0\leq i\leq N) 的完整常微分方程组可以写成:
[
\frac{du_1}{dt}=\frac{\alpha}{\Delta x^2}(u_2-2u_1+u_0), \frac{du_2}{dt}=\frac{\alpha}{\Delta x^2}(u_3-2u_2+u_1), \cdots, \frac{du_N}{dt}=\frac{\alpha}{\Delta x^2}(u_{N + 1}-2u_N+u_{N - 1})
]
边界处的方程根据边界条件指定。例如,如果给出狄利克雷条件 (u_0 = \beta)(常数),则 (\frac{du_0}{dt}=0);如果在边界处给出诺伊曼条件 (\frac{\partial u}{\partial x}|
{x = 0}=0),则用中心差分近似 (\frac{\partial u}{\partial x}=\frac{u_1 - u
{-1}}{2\Delta x}) 替换偏导数,得到 (\frac{du_0}{dt}=\frac{\alpha}{\Delta x^2}(u_1 - u_0))。
以下是几个用于求解非稳态抛物型偏微分方程的MATLAB函数:
-
parab1D.m
:求解一维抛物型偏微分方程。
function [x,t,u] = parab1D(nx,nt,dx,dt,alpha,u0,bc,func,varargin)
% Solve 1-dimensional parabolic PDE
% Outputs:
% x, t; vectors of x and t values
% u: matrix of dependent variables [u(x,t)]
% Inputs:
% nx, nt: number of divisions in x and t direction
% dx, dy: x and t increment
% alpha: coefficient of equation
% u0: vector of u distribution at t=0
% bc: a matrix containing types and values of boundary conditions
% in x direction (2x2 or 2x3 matrix)
% row 1: conditions at lower x, row 2: conditions at upper x
% 1st column: type of condition
% (1: Dirichlet condition, values of u in 2nd column
% 2: Neumann condition, values of u' in 2nd column
% 3: Robbins condition, 2-3 columns contain constant and
coef. of u)
% Initialization
if nargin < 7
error('Insufficient number of inputs.')
end
nx = fix(nx); x = [0:nx]*dx; nt = fix(nt);
t = [0:nt]*dt; r = alpha*dt/dx^2;
u0 = (u0(:).')'; % confirm column vector
if length(u0) ~= nx+1
error('Incorrect length of the initial condition vector.')
end
[a,b]=size(bc);
if a ~= 2
error('Invalid number of boundary conditions.')
end
if b < 2 | b > 3
error('Invalid boundary condition.')
end
if b == 2 & max(bc(:,1)) <= 2
bc = [bc zeros(1, 2)];
end
u(:,1) = u0; c = zeros(nx+1,1);
% Iteration according to t
for n = 2:nt+1 % lower x boundary condition
switch bc(1)
case 1
A(1) = 1; c(1) = bc(1, 2);
case {2, 3}
A(1) = -3/(2*dx) - bc(1, 3);
A(1, 2) = 2/dx; A(1, 3) = -1/(2*dx); c(1) = bc(1, 2);
end
% Interior points
for i = 2:nx
A(i,i-1) = -r; A(i,i) = 2*(1+r); A(i,i+1) = -r;
c(i) = r*u(i-1,n-1) + 2*(1-r)*u(i,n-1) + r*u(i+1,n-1);
if nargin >= 8 % Nonhomogeneous equation
intercept = feval(func,0,x(i),t(n),varargin{:});
slope = feval(func,1,x(i),t(n),varargin{:}) - intercept;
A(i,i) = A(i,i) - dt*slope;
c(i) = c(i) + dt*feval(func,u(i,n-1),x(i),t(n-1),...
varargin{:}) + dt*intercept;
end
end
switch bc(1, 2) % upper x boundary condition
case 1
A(nx+1,nx+1) = 1; c(nx+1) = bc(2);
case {2, 3}
A(nx+1,nx+1) = 3/(2*dx) - bc(2, 3);
A(nx+1,nx) = -2/dx; A(nx+1,nx-1) = 1/(2*dx); c(nx+1) = bc(2);
end
u(:,n) = inv(A)*c;
end
- parab2D.m :求解二维抛物型偏微分方程。
function [x,y,t,u] = parab2D(nx,ny,nt,dx,dy,dt,alpha,...
u0,bc,func,varargin)
% Solve 2-dimensional parabolic PDE: use explicit formula
% Outputs:
% x, y, t: vectors of x, y and t values
% u: 3D array of dependent variables [u(x,y,t)]
% Inputs:
% nx, ny, nt: number of divisions in x, y and t direction
% dx, dy: x and y increments
% dt: t increments (leave empty to use the default values)
% alpha: coefficient of equation
% u0: matrix of u distribution at t=0 [u0(x,y)]
% bc: a matrix containing types and values of boundary conditions
% in x and y directions (4x2 or 4x3 matrix)
% order of appearing: lower x, upper x, lower y, upper y
% in rows 1 to 4 of the matric bc
% 1st column: type of condition
% (1: Dirichlet condition, values of u in 2nd column
% 2: Neumann condition, values of u' in 2nd column
% 3: Robbins condition, 2-3 columns contain constant and
coef. of u)
% Initialization
if nargin < 9
error(' Invalid number of inputs.')
end
nx = fix(nx); x = [0:nx]*dx; ny = fix(ny); y = [0:ny]*dy;
% Check dt for stability
tmax = dt*nt;
if isempty(dt) | dt > (dx^2+dy^2)/(16*alpha)
dt = (dx^2+dy^2)/(16*alpha); nt = tmax/dt+1;
fprintf('\ndt is adjusted to %6.2e (nt=%3d)\n',dt,fix(nt))
end
nt = fix(nt); t = [0:nt]*dt; rx = alpha*dt/dx^2; ry = alpha*dt/dy^2;
[r0,c0] = size(u0);
if r0 ~= nx+1 | c0 ~= ny+1
error('Incorrect size of the initial condition matrix.')
end
[a,b]=size(bc);
if a ~= 4
error('Invalid number of boundary conditions.')
end
if b < 2 | b > 3
error('Invalid boundary condition.')
end
if b == 2 & max(bc(:,1)) <= 2
bc = [bc zeros(1, 4)];
end
% Solution of PDE
u(:,:,1) = u0;
for n = 1:nt
for i = 2:nx
for j = 2:ny
u(i,j,n+1) = rx*(u(i+1,j,n)+u(i-1,j,n))+ ry*(u(i,j+1,n)...
+ u(i,j-1,n)) + (1-2*rx-2*ry)*u(i,j,n);
if nargin >= 10
u(i,j,n+1) = u(i,j,n+1) +...
dt*feval(func,u(i,j,n),x(i),y(j),t(n),varargin{:});
end
end
end
% Lower x boundary condition
switch bc(1)
case 1
u(1,2:ny,n+1) = bc(1, 2) * ones(1,ny-1,1);
case {2, 3}
u(1,2:ny,n+1) = (-2*bc(1,2)*dx + 4*u(2,2:ny,n+1)...
- u(3,2:ny,n+1)) / (2*bc(1,3)*dx + 3);
end
% Upper x boundary condition
switch bc(1, 2)
case 1
u(nx+1,2:ny,n+1) = bc(2) * ones(1,ny-1,1);
case {2, 3}
u(nx+1,2:ny,n+1) = (-2*bc(2,2)*dx - 4*u(nx,2:ny,n+1) ...
+ u(nx-1,2:ny,n+1)) / (2*bc(2,3)*dx - 3);
end
% Lower y boundary condition
switch bc(1, 3)
case 1
u(2:nx,1,n+1) = bc(2, 3) * ones(nx-1,1,1);
case {2, 3}
u(2:nx,1,n+1) = (-2*bc(3,2)*dy + 4*u(2:nx,2,n+1) ...
- u(2:nx,3,n+1)) / (2*bc(3,3)*dy + 3);
end
% Upper y boundary conditionCorner nodes
switch bc(1, 4)
case 1
u(2:nx,ny+1,n+1) = bc(2, 4) * ones(nx-1,1,1);
case {2, 3}
u(2:nx,ny+1,n+1) = (-2*bc(4,2)*dy - 4*u(2:nx,ny,n+1) ...
+ u(2:nx,ny-1,n+1)) / (2*bc(4,3)*dy - 3);
end
end
% Corner nodes
u(1,1,:) = (u(1,2,:) + u(2,1,:)) / 2;
u(nx+1,1,:) = (u(nx+1,2,:) + u(nx,1,:)) / 2;
u(1,ny+1,:) = (u(1,ny,:) + u(2,ny+1,:)) / 2;
u(nx+1,ny+1,:) = (u(nx+1,ny,:) + u(nx,ny+1,:)) / 2;
- parabDbc.m :求解具有恒定狄利克雷边界条件的一维抛物型偏微分方程。
function [u r] = parabDbc(nx,nt,dx,dt,alpha,u0,bci,bcf)
% Solve 1-dimensional parabolic PDE (constant Dirichlet boundary
conditions)
% Outputs:
% u: matrix of dependent variables [u(x,t)]
% Inputs:
% nx, nt: number of divisions in x and t direction
% dx, dy: x and t increments
% alpha: coefficient of equation
% u0: row vector of u distribution at t=0
% bci, bcf: boundary conditions at both ends of x (scalar)
r = alpha*dt/dx^2; A = zeros(nx-1,nx-1);
u = zeros(nt+1,nx+1); u(:,1) = bci*ones(nt+1,1);
u(:,nx+1) = bcf*ones(nt+1,1);
u(1,:) = u0; A(1) = 1 + 2*r; A(1, 2) = -r;
for i = 2:nx-2
A(i,i) = 1 + 2*r; A(i,i-1) = -r; A(i,i+1) = -r;
end
A(nx-1,nx-2) = -r; A(nx-1,nx-1) = 1 + 2*r;
b(1) = u0(2) + u0(1)*r;
for i = 2:nx-2
b(i,1) = u0(i+1);
end
b(nx-1,1) = u0(nx) + u0(nx+1)*r;
[L U] = lu(A);
for j = 2:nt+1
y = L\b; x = U\y; u(j,2:nx) = x'; b = x;
b(1) = b(1) + bci*r; b(nx-1,1) = b(nx-1,1) + bcf*r;
end
end
下面是一个一维抛物型偏微分方程用于传热的例子。一堵砖墙厚 (0.5 m),在 (t = 0) 时墙的温度为 (100°C)。砖的热扩散率 (\alpha = 4.52\times10^{-7} m/sec^2)。墙两侧的温度突然降至 (18°C)。计算并绘制在 (5 hr)((18,000 sec))内砖墙内的温度分布,间隔为 (300 sec)。假设 (x) 方向的节点数为 (25)。
alpha = 4.52e-7; nx = 25; dx = 0.5/nx; dt = 300; nt = 18000/dt;
u0 = 100*ones(1,nx+1); bci = 18; bcf = 18;
[u r] = parabDbc(nx, nt, dx, dt, alpha, u0, bci, bcf);
surf(u), axis([0 nx+1 0 nt+1 0 110])
view([-217 30]), xlabel('x'), ylabel('t'), zlabel('T')
r
运行上述代码后,可以得到温度分布的图形和结果。
3. 稳态热传导
三维固体中的稳态热传导可以用椭圆型偏微分方程表示:
[
\frac{\partial^2 T}{\partial x^2}+\frac{\partial^2 T}{\partial y^2}+\frac{\partial^2 T}{\partial z^2}=0
]
二维稳态热传导问题可以用以下方程描述:
-
拉普拉斯方程
:(\nabla^2T = 0)
-
泊松方程
:(\nabla^2T = f(x,y))
-
亥姆霍兹方程
:(\nabla^2T+g(x,y)T = f(x,y))
其中 (\nabla^2u = \frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2})。对拉普拉斯方程引入中心差分近似 (\nabla^2u = \frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0),得到:
[
\frac{1}{\Delta x^2}(u_{i,j + 1}-2u_{i,j}+u_{i,j - 1})+\frac{1}{\Delta y^2}(u_{i + 1,j}-2u_{i,j}+u_{i - 1,j})=0
]
整理后得到:
[
-\left(\frac{2}{\Delta x^2}+\frac{2}{\Delta y^2}\right)u_{i,j}+\frac{1}{\Delta x^2}(u_{i,j + 1}+u_{i,j - 1})+\frac{1}{\Delta y^2}(u_{i + 1,j}+u_{i - 1,j})=0
]
函数
ellipticPDE
用于求解椭圆型偏微分方程:
function [x,y,U] = ellipticPDE(nx,ny,dx,dy,bc,f)
% Solve 2-dimensional elliptic PDE
% output:
% x, y: vectors of x and y values
% U: matrix of dependent variables (U(x,y))
% input:
% nx, ny: number of divisions in x and y direction
% dx, dy: x and y increments
% f: constant for Poisson equation
% bc: a matrix containing types and values of boundary conditions
% in x and y directions (4x2 or 4x3 matrix)
% order of appearing: lower x, upper x, lower y, upper y
% in rows 1 to 4 of the matric bc
% 1st column: type of condition:
% (1: Dirichlet condition, values of u in 2nd column
% 2: Neumann condition, values of u' in 2nd column
% 3: Robbins condition, 2-3 columns contain constant and coef. of u)
% Initialization
if nargin < 5
error('Invalid number of inputs.')
end
[a,b] = size(bc);
if a ~= 4
error('Invalid number of boundary conditions.')
end
if b < 2 | b > 3
error('Invalid boundary condition.')
end
if b == 2 & max(bc(:,1)) <= 2
bc = [bc zeros(1, 4)];
end
if nargin < 6 | isempty(f)
f = 0;
end
nx = fix(nx); x = [0:nx]*dx; ny = fix(ny); y = [0:ny]*dy;
dx2 = 1/dx^2; dy2 = 1/dy^2;
% Coefficient matrix and constant vector
n = (nx+1)*(ny+1); A = zeros(n); c = zeros(n,1);
onex = diag(diag(ones(nx-1))); oney = diag(diag(ones(ny-1)));
% Interior nodes
i = [2:nx];
for j = 2:ny
ind = (j-1)*(nx+1)+i;
A(ind,ind) = -2*(dx2+dy2)*onex;
A(ind,ind+1) = A(ind,ind+1) + dx2*onex;
A(ind,ind-1) = A(ind,ind-1) + dx2*onex;
A(ind,ind+nx+1) = A(ind,ind+nx+1) + dy2*onex;
A(ind,ind-nx-1) = A(ind,ind-nx-1) + dy2*onex;
c(ind) = f*ones(nx-1,1);
end
% Lower x boundary condition
switch bc(1)
case 1
ind = ([2:ny]-1)*(nx+1)+1;
A(ind,ind) = A(ind,ind) + oney;
c(ind) = bc(1, 2)*ones(ny-1,1);
case {2, 3}
ind = ([2:ny]-1)*(nx+1)+1;
A(ind,ind) = A(ind,ind) - (3/(2*dx) + bc(1, 3))*oney;
A(ind,ind+1) = A(ind,ind+1) + 2/dx*oney;
A(ind,ind+2) = A(ind,ind+2) - 1/(2*dx)*oney;
c(ind) = bc(1, 2)*ones(ny-1,1);
end
% Upper x boundary condition
switch bc(1, 2)
case 1
ind = [2:ny]*(nx+1);
A(ind,ind) = A(ind,ind) + oney;
c(ind) = bc(2)*ones(ny-1,1);
case {2, 3}
ind = [2:ny]*(nx+1);
A(ind,ind) = A(ind,ind) + (3/(2*dx) - bc(2, 3))*oney;
A(ind,ind-1) = A(ind,ind-1) - 2/dx*oney;
A(ind,ind-2) = A(ind,ind-2) + 1/(2*dx)*oney;
c(ind) = bc(2)*ones(ny-1,1);
end
% Lower y boundary condition
switch bc(1, 3)
case 1
ind = [2:nx];
A(ind,ind) = A(ind,ind) + onex;
c(ind) = bc(2, 3)*ones(nx-1,1);
case {2, 3}
ind = [2:nx];
A(ind,ind) = A(ind,ind) - (3/(2*dy) + bc(3))*onex;
A(ind,ind+nx+1) = 2/dy*onex;
A(ind,ind+2*(nx+1)) = -1/(2*dy)*onex;
c(ind) = bc(2, 3)*ones(nx-1,1);
end
% Upper y boundary condition
switch bc(1, 4)
case 1
ind = ny*(nx+1)+[2:nx];
A(ind,ind) = A(ind,ind) + onex;
c(ind) = bc(2, 4)*ones(nx-1,1);
case {2, 3}
ind = ny*(nx+1)+[2:nx];
A(ind,ind) = A(ind,ind) + (3/(2*dy) - bc(3, 4))*onex;
A(ind,ind-(nx+1)) = A(ind,ind-(nx+1)) - 2/dy*onex;
A(ind,ind-2*(nx+1)) = A(ind,ind-2*(nx+1)) + 1/(2*dy)*onex;
c(ind) = bc(2, 4)*ones(nx-1,1);
end
% Corner nodes
A(1) = 1; A(1, 2) = -1/2; A(1,nx+2) = -1/2; c(1) = 0;
A(nx+1,nx+1) = 1; A(nx+1,nx) = -1/2; A(nx+1,2*(nx+1)) = -1/2;
c(nx+1) = 0;
A(ny*(nx+1)+1,ny*(nx+1)+1) = 1;
A(ny*(nx+1)+1,ny*(nx+1)+2) = -1/2;
A(ny*(nx+1)+1,(ny-1)*(nx+1)+1) = -1/2;
c(ny*(nx+1)+1) = 0;
A(n,n) = 1; A(n,n-1) = -1/2; A(n,n-(nx+1)) = -1/2; c(n) = 0;
u = inv(A)*c; % solve equation
% Rearrange results in matrix form
for k = 1:ny+1
U(k,1:nx+1) = u((k-1)*(nx+1)+1:k*(nx+1))';
end
下面是一个二维椭圆型方程用于传热的例子。二维薄金属板中的温度分布可以用二维椭圆型偏微分方程描述:
[
\frac{\partial^2 T}{\partial x^2}+\frac{\partial^2 T}{\partial y^2}=f
]
其中 (f) 假设为常数。金属板由一种合金制成,熔点为 (800°C),热导率为 (16 W/(m·K))。板受到电流作用,在板内产生均匀的热源,产生的热量为 (Q’ = 100 kW/m^3)。板的四条边都与 (25°C) 的流体接触。边界条件为一组罗宾斯条件。
% tempPDE.m
% Solve Laplace/Poisson equations using finite difference method
clear all;
bcond = ['Lower x boundary condition:'
'Upper x boundary condition:'
'Lower y boundary condition:'
'Upper y boundary condition:'];
itercal = 1;
while itercal
distx = input('Length of the plate in x direction (m): ');
disty = input('Width of the plate in y direction (m): ');
ndx = input('Number of divisions in x direction: ');
ndy = input('Number of divisions in y direction: ');
rhf = input('Right-hand side of the equation: ');
disp('Boundary conditions:')
for k = 1:4
disp(bcond(k,:))
disp('1: Dirichlet, 2: Neumann, 3: Robbins')
bc(k,1) = input('Select boundary condition: ');
if bc(k,1) < 3
bc(k,2) = input('Value = ');
else
disp(' u” = (beta) + (gamma)*u')
bc(k,2) = input('Constant (beta): ');
bc(k,3) = input('Coefficient (gamma): ');
end
end
[x,y,T] = ellipticPDE(ndx,ndy,distx/ndx,disty/ndy,bc,rhf);
surf(y,x,T), xlabel('x(m)'), ylabel('y(m)'), zlabel('T(deg C)')
colorbar, view(135,45), disp(' ')
itercal = input('Repeat calculations (no:0, yes:1)? '); clc
end
运行上述代码后,可以得到金属板内的温度分布图形。
通过以上内容,我们可以看到如何使用MATLAB解决不同类型的传热问题,包括管道法兰的热损失计算、非稳态和稳态热传导问题。这些方法和代码可以帮助我们更好地理解和分析传热过程。
传热问题的MATLAB计算与分析
4. 传热问题求解流程总结
为了更清晰地展示求解不同传热问题的步骤,下面给出一个总结性的流程图:
graph LR
A[确定传热问题类型] --> B{是否为管道法兰热损失问题}
B -- 是 --> C[定义热平衡方程和边界条件]
C --> D[编写MATLAB函数求解]
D --> E[绘制热传递速率和温度曲线]
B -- 否 --> F{是否为非稳态热传导问题}
F -- 是 --> G[确定方程类型(一维/二维)和边界条件类型]
G --> H[选择合适的MATLAB函数(parab1D/parab2D/parabDbc)]
H --> I[输入参数并求解]
I --> J[绘制温度分布图形]
F -- 否 --> K{是否为稳态热传导问题}
K -- 是 --> L[确定方程类型(拉普拉斯/泊松/亥姆霍兹)]
L --> M[引入中心差分近似]
M --> N[使用ellipticPDE函数求解]
N --> O[绘制温度分布图形]
5. 不同传热问题的对比分析
| 传热问题类型 | 方程形式 | 边界条件类型 | 求解方法 | MATLAB函数 |
|---|---|---|---|---|
| 管道法兰热损失 | 热平衡方程:(\frac{dT}{dr}=-\frac{q}{k}, \frac{d}{dr}(rq)=-\frac{hr}{B}(T - T_a)) | 初始和边界条件:(T | _{r = R_1}=T_0, (rq) | _{r = R_2}=R_2h(T |
| 非稳态热传导 - 一维 | (\frac{\partial u}{\partial t}=\alpha\frac{\partial^2 u}{\partial x^2}) | 狄利克雷、诺伊曼、柯西、罗宾斯条件 | 线方法,有限差分离散化 | parab1D、parabDbc |
| 非稳态热传导 - 二维 | (\frac{\partial T}{\partial t}=\alpha\left(\frac{\partial^2 T}{\partial x^2}+\frac{\partial^2 T}{\partial y^2}\right)) | 狄利克雷、诺伊曼、柯西、罗宾斯条件 | 线方法,有限差分离散化 | parab2D |
| 稳态热传导 - 二维 | 拉普拉斯方程:(\nabla^2T = 0);泊松方程:(\nabla^2T = f(x,y));亥姆霍兹方程:(\nabla^2T+g(x,y)T = f(x,y)) | 狄利克雷、诺伊曼、罗宾斯条件 | 中心差分近似,矩阵求解 | ellipticPDE |
6. 注意事项和技巧
在使用上述方法和MATLAB函数求解传热问题时,需要注意以下几点:
-
参数输入
:确保输入的参数(如热导率、热扩散率、边界条件等)的单位和数值正确,否则可能导致计算结果错误。
-
边界条件处理
:不同的边界条件(狄利克雷、诺伊曼、罗宾斯)在代码中有不同的处理方式,需要根据具体问题正确设置。例如,在parab1D和ellipticPDE函数中,通过
switch
语句根据边界条件类型进行不同的操作。
-
稳定性检查
:在非稳态热传导问题中,对于时间步长
dt
需要进行稳定性检查。如在parab2D函数中,如果
dt
过大,会自动调整以保证计算的稳定性。
-
迭代次数
:在管道法兰热损失问题中,使用二分法迭代求解时,需要设置合适的初始范围和误差精度,以确保收敛到正确的结果。
7. 拓展应用和展望
传热问题在工程领域有着广泛的应用,如热交换器设计、电子设备散热、建筑保温等。通过掌握上述方法和MATLAB代码,可以进一步拓展到更复杂的实际问题中。例如,可以考虑变热导率、变边界条件等情况,对代码进行相应的修改和扩展。
同时,随着计算机技术的发展,数值模拟方法也在不断进步。可以尝试使用更高效的算法和并行计算技术,提高计算速度和精度。此外,结合机器学习和深度学习方法,对传热问题进行预测和优化,也是未来的一个研究方向。
总之,通过深入理解和应用这些传热问题的求解方法,能够更好地解决实际工程中的热传递问题,为工程设计和优化提供有力的支持。
MATLAB在传热问题中的应用
超级会员免费看
1345

被折叠的 条评论
为什么被折叠?



