HDU.1757 A Simple Math Problem (矩阵快速幂)

本文介绍了一种使用矩阵快速幂解决特定递推问题的方法,适用于求解形如f(x) = a0*f(x-1) + ... + a9*f(x-10)的递推公式,特别关注于如何构造矩阵并进行快速幂运算来高效计算f(k)%m。

HDU.1757 A Simple Math Problem (矩阵快速幂)

点我挑战题目

题意分析

给出一个递推式:
1.x<=9时,f(x) = x,
2.x>9时,f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10).
现在想让你求解f(k) % m 的值为多少.

当x<=9时,特判输出x % m.
当x>9是,构造如下矩阵乘法:

f(x)000000000
f(x-1)000000000
f(x-2)000000000
f(x-3)000000000
f(x-4)000000000
f(x-5)000000000
f(x-6)000000000
f(x-7)000000000
f(x-8)000000000
f(x-9)000000000

等于

a0a1a2a3a4a5a6a7a8a9
1000000000
0100000000
0010000000
0001000000
0000100000
0000010000
0000001000
0000000100
0000000010

f(x-1)000000000
f(x-2)000000000
f(x-3)000000000
f(x-4)000000000
f(x-5)000000000
f(x-6)000000000
f(x-7)000000000
f(x-8)000000000
f(x-9)000000000
f(x-10)000000000

如此便可得到最后结果。

代码总览

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <sstream>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#define INF 0x3f3f3f3f
#define nmax 200
#define MEM(x) memset(x,0,sizeof(x))
using namespace std;
const int Dmax = 11;
int N = 10;
int MOD;
typedef struct{
    int matrix[Dmax][Dmax];
    void init()//初始化为单位矩阵
    {
        memset(matrix,0,sizeof(matrix));
        for(int i = 0; i<Dmax;++i) matrix[i][i] = 1;
    }
}MAT;
MAT ADD(MAT a, MAT b)
{
    for(int i = 0; i<N;++i){
        for(int j = 0;j<N;++j){
            a.matrix[i][j] +=b.matrix[i][j];
            a.matrix[i][j] %= MOD;
        }
    }
    return a;
}
MAT MUL(MAT a, MAT b)
{
    MAT ans;
    for(int i = 0; i<N;++i){
        for(int j = 0; j<N;++j){
            ans.matrix[i][j] = 0;
            for(int k = 0; k<N;++k){
                ans.matrix[i][j] += ( (a.matrix[i][k] % MOD) * (b.matrix[k][j] % MOD) ) % MOD;
            }
            ans.matrix[i][j] %= MOD;
        }
    }
    return ans;
}
MAT POW(MAT a, int t)
{
    MAT ans; ans.init();
    while(t){
        if(t&1) ans = MUL(ans,a);
        t>>=1;
        a = MUL(a,a);
    }
    return ans;
}
void OUT(MAT a)
{
    for(int i = 0; i<N;++i){
        for(int j =  0; j<N;++j){
            printf("%5d",a.matrix[i][j]);
        }
        printf("\n");
    }
}
void IN(MAT & a,MAT & temp)
{
    memset(a.matrix,0,sizeof(a.matrix));
    memset(temp.matrix,0,sizeof(temp.matrix));
    for(int i = 0; i<N;++i) a.matrix[i][0] = 9-i;
    for(int i = 0; i<N;++i) scanf("%d",&temp.matrix[0][i]);
    for(int i = 1; i<N;++i) temp.matrix[i][i-1] = 1;
}
void CAL(MAT a)
{
    printf("%d\n",a.matrix[0][0] % MOD);
}
int main()
{
    //freopen("in.txt","r",stdin);
    int K;
    while(scanf("%d%d",&K,&MOD) != EOF){
        if(K<=9){
            printf("%d\n",K);
            continue;
        }
        MAT init,temp;
        IN(init,temp);
        temp = POW(temp,K-9);
        temp = MUL(temp,init);
        CAL(temp);
    }
    return 0;
}
该数据集通过合成方式模拟了多种发动机在运行过程中的传感器监测数据,旨在构建一个用于机械系统故障检测的基准资源,特别适用于汽车领域的诊断分析。数据按固定时间间隔采集,涵盖了发动机性能指标、异常状态以及工作模式等多维度信息。 时间戳:数据类型为日期时间,记录了每个数据点的采集时刻。序列起始于2024年12月24日10:00,并以5分钟为间隔持续生成,体现了对发动机运行状态的连续监测。 温度(摄氏度):以浮点数形式记录发动机的温度读数。其数值范围通常处于60至120摄氏度之间,反映了发动机在常规工况下的典型温度区间。 转速(转/分钟):以浮点数表示发动机曲轴的旋转速度。该参数在1000至4000转/分钟的范围内随机生成,符合多数发动机在正常运转时的转速特征。 燃油效率(公里/升):浮点型变量,用于衡量发动机的燃料利用效能,即每升燃料所能支持的行驶里程。其取值范围设定在15至30公里/升之间。 振动_X、振动_Y、振动_Z:这三个浮点数列分别记录了发动机在三维空间坐标系中各轴向的振动强度。测量值标准化至0到1的标度,较高的数值通常暗示存在异常振动,可能与潜在的机械故障相关。 扭矩(牛·米):以浮点数表征发动机输出的旋转力矩,数值区间为50至200牛·米,体现了发动机的负载能力。 功率输出(千瓦):浮点型变量,描述发动机单位时间内做功的速率,取值范围为20至100千瓦。 故障状态:整型分类变量,用于标识发动机的异常程度,共分为四个等级:0代表正常状态,1表示轻微故障,2对应中等故障,3指示严重故障。该列作为分类任务的目标变量,支持基于传感器数据预测故障等级。 运行模式:字符串类型变量,描述发动机当前的工作状态,主要包括:怠速(发动机运转但无负载)、巡航(发动机在常规负载下平稳运行)、重载(发动机承受高负荷或高压工况)。 数据集整体包含1000条记录,每条记录对应特定时刻的发动机性能快照。其中故障状态涵盖从正常到严重故障的四级分类,有助于训练模型实现故障预测与诊断。所有数据均为合成生成,旨在模拟真实的发动机性能变化与典型故障场景,所包含的温度、转速、燃油效率、振动、扭矩及功率输出等关键传感指标,均为影响发动机故障判定的重要因素。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
HDU 6259 是一道与回文子串相关的编程题目,要求统计特定条件下回文子串的数量。题目通常涉及字符串操作、动态规划或 Manacher 算法等技术。 ### 解题思路 题目核心在于识别并统计满足特定条件的回文子串。通常的解题方法包括: - **暴力枚举**:适用于小规模输入,时间复杂度为 $ O(n^2) $。 - **动态规划**:使用二维数组 `dp[i][j]` 表示从索引 `i` 到 `j` 的子串是否为回文。 - **Manacher 算法**:线性时间复杂度 $ O(n) $ 的高效算法,适用于大规模输入。 ### 示例代码 以下是一个使用动态规划方法统计所有回文子串的示例代码: ```cpp #include <iostream> #include <vector> #include <string> using namespace std; int countPalindromicSubstrings(string s) { int n = s.size(); vector<vector<bool>> dp(n, vector<bool>(n, false)); int count = 0; // 单个字符的回文 for (int i = 0; i < n; ++i) { dp[i][i] = true; ++count; } // 两个字符的回文 for (int i = 0; i < n - 1; ++i) { if (s[i] == s[i + 1]) { dp[i][i + 1] = true; ++count; } } // 更长的回文子串 for (int length = 3; length <= n; ++length) { for (int i = 0; i <= n - length; ++i) { int j = i + length - 1; if (s[i] == s[j] && dp[i + 1][j - 1]) { dp[i][j] = true; ++count; } } } return count; } int main() { string s; cin >> s; cout << countPalindromicSubstrings(s) << endl; return 0; } ``` ### 时间与空间复杂度分析 - **动态规划**:时间复杂度为 $ O(n^2) $,空间复杂度为 $ O(n^2) $。 - **Manacher 算法**:时间复杂度为 $ O(n) $,空间复杂度为 $ O(n) $。 ### 优化建议 对于大规模字符串(如长度超过 $ 10^5 $),应优先使用 Manacher 算法以提升效率。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值