leetcode之二叉树遍历

前言 二叉树遍历,一般分为广度优先遍历(BFS)和深度优先遍历(DFS),其中深度优先遍历---前中后序遍历,一条道走到黑,前中后序遍历大部分会用到递归的方式,当然也会用非递归的栈的方式来实现,只不过非递归的时间复杂度更高;广度优先遍历---层次遍历,依赖队列的方式来实现;

 

//    1
//   / \
//  2   3
// / \   \
//4   5   6
// 前序遍历顺序:[1 2 4 5 3 6]
// 中序遍历顺序:[4 2 5 1 3 6]
// 后序遍历顺序:[4 5 2 6 3 1]
// 层次遍历顺序:[1 2 3 4 5 6]

1.层序遍历

解释:根据返回的结果,层序遍历输出各节点的值,首个值是所返回的根节点的值。
其中:null 表示是空节点
*/
#include <iostream>
#include <vector>
#include <algorithm>
#include <queue>
using namespace std;

struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) {
        vector <vector <int>> ret;
        if (!root) return ret;
        queue <TreeNode*> q;
        q.push(root);
        while (!q.empty()) {
            int currentLevelSize = q.size();
            ret.push_back(vector <int> ());
            for (int i = 1; i <= currentLevelSize; ++i) {
                auto node = q.front(); // 队列的头
                q.pop();
                ret.back().push_back(node->val); //pop出队列的节点时,把队列中节点的值存于二维vector,back()函数表示得到数组的最后一个单元的引用
                cout << node->val << endl;
                if (node->left) q.push(node->left);
                if (node->right) q.push(node->right);
            }
        }
        return ret;
    }
};

int main() {
    vector<string> vec = {"3","9","20","null","null","15","7"};  // [[3],[9,20],[15,7]]
    // 初始化一棵树
    //    3
    //   / \
    //  9  20
    //    /  \
    //   15   7
    TreeNode* root = new TreeNode(3);
    TreeNode* a1 = new TreeNode(9);
    TreeNode* a2 = new TreeNode(20);
    TreeNode* b1 = new TreeNode(15);
    TreeNode* b2 = new TreeNode(7);

    root->left = a1;
    root->right = a2;
    a2->left = b1;
    a2->right = b2;

    Solution solution;
    vector<vector<int>> matrix = solution.levelOrder(root);
}

2.前中后前序遍历(递归方式)

#include <iostream>
#include <vector>
#include <queue>
#include <stack>
using namespace std;

/// Definition for a binary tree node.
struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};


/// Simulation
/// Time Complexity: O(n^2)
/// Space Complexity: O(n)
class Solution {
public:
    TreeNode* insertIntoMaxTree(TreeNode* root, int val) {

        vector<int> vec = {14,3,8,2,9};
        dfs(root, vec);
        vec.push_back(val);
        return construct(vec, 0, vec.size() - 1);
    }

    TreeNode* construct(const vector<int>& A, int l, int r){

        if(l > r) return NULL;

        int best_val = A[l], best_index = l;
        for(int i = l + 1; i <= r; i ++)
            if(A[i] > best_val)
                best_val = A[i], best_index = i;

        TreeNode* retNode = new TreeNode(A[best_index]);
        retNode->left = construct(A, l, best_index - 1);
        retNode->right = construct(A, best_index + 1, r);
        return retNode;
    }

    void dfs(TreeNode* root, vector<int>& A){

        if(!root) return;
        dfs(root->left, A);
        A.push_back(root->val);
        dfs(root->right, A);
    }

    // 前序遍历
    void print1BST(TreeNode* root) {
        if (!root) {
            return;
        }
        cout << "print1BST: "<< root->val << endl;
        if (root->left) {
            print1BST(root->left);
        }
        if (root->right) {
            print1BST(root->right);
        }

    }
    // 中序遍历
    void print2BST(TreeNode* root) {
        if (!root) {
            return;
        }
        if (root->left) {
            print3BST(root->left);
        }
        cout << "print2BST: "<< root->val << endl;
        if (root->left) {
            print3BST(root->right);
        }
    }
    // 后序遍历
    void print3BST(TreeNode* root) {
        if (!root) {
            return;
        }
        if (root->left) {
            print3BST(root->left);
        }
        if (root->left) {
            print3BST(root->right);
        }
        cout << "print3BST: "<< root->val << endl;

    }
    // 层序遍历
    // 1)首先利用队列先进先出的规则,把根节点放进队列,然后用一个vector来保存根节点的值,
    // 2)然后取出根节点的左节点和右节点放进队列,当pop根节点后,此时轮到保存左节点和右节点的值,然后pop,直到队列为空,继续下一层遍历
    void printLevel(TreeNode* root) {
        vector<int> vec;
        if(root == nullptr) {
            return;
        }
        queue<TreeNode*> que;
        que.push(root);
        while(!que.empty()) {
            TreeNode* cur = que.front();
            que.pop();
            vec.push_back(cur->val);
            cout << "printLevel: " << cur->val << endl;
            if (cur->left) {
                que.push(cur->left);
            }
            if (cur->right) {
                que.push(cur->right);
            }
        }
    }

3. 非递归的前中后序遍历

    // 非递归的前序遍历
    // 1)利用栈Stack先进后出的规则,先把根节点入栈,然后取出值存于vector,然后再把右节点和右左节点入栈,依次pop,直到栈为空
    // 2)后序遍历可以将前序遍历改成 root -> right -> left,然后反转一下,就成了后序遍历 left->right->root
    void preOrder(TreeNode *root) {
        stack<TreeNode*> stackPointer;
        vector<int> vec;
        if (root == nullptr){
            return;
        }
        stackPointer.push(root);
        while (!stackPointer.empty()) {
            TreeNode *node = stackPointer.top();
            if(node == nullptr) {
                continue;
            }
            vec.push_back(node->val);
            stackPointer.push(node->right); // 先右子树,后左子树入栈,保持前序遍历 root -> left -> right
            stackPointer.push(node->left);
            stackPointer.pop();
        }
        for (int i = 0; i > 0; ++i) {
            cout << "preOrder: " << vec[i] << endl;
        }
    }
    // 非递归的中序遍历 left->root->right   入栈时,先入root,然后把left赋给root,此时出栈的是left->root
    void inOrder(TreeNode *root) {
        stack<TreeNode*> stack;
        if (root == nullptr) {
            return;
        }
        TreeNode *cur = root;
        while (!stack.empty()) { // 保持 入栈 root->left,出栈left->root->right
            while (cur != nullptr) {
                stack.push(cur);
                cur = cur->left;
            }
            TreeNode *node = stack.top();
            // vec.push_back(node->val);
            cout << "inOrder: " << node->val << endl;
            cur = node->right;
        }
    }
    
    // 非递归的后序遍历 left->right->root
    void postOrder(TreeNode *root) {
        stack<TreeNode*> stackPointer;
        vector<int> vec;
        if (root == nullptr){
            return;
        }
        stackPointer.push(root);
        while (!stackPointer.empty()) {
            TreeNode *node = stackPointer.top();
            if(node == nullptr) {
                continue;
            }
            vec.push_back(node->val);
            stackPointer.push(node->left); // 先左子树,后右子树入栈,保持出栈前序遍历 root -> right -> left,反转一下
            stackPointer.push(node->right);
            stackPointer.pop();
        }
        for (int i = 0; i > 0; --i) {
            cout << "postOrder: " << vec[i] << endl;
        }

    }

4.二叉树的插入操作

    /// Definition for a binary tree node.
    struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
    };

   TreeNode* insertIntoMaxTree(TreeNode* root, int val) {

        vector<int> vec = {14,3,8,2,9};
        dfs(root, vec);
        vec.push_back(val);
        return construct(vec, 0, vec.size() - 1);
    }

    TreeNode* construct(const vector<int>& A, int l, int r){

        if(l > r) return NULL;

        int best_val = A[l], best_index = l;
        for(int i = l + 1; i <= r; i ++)
            if(A[i] > best_val)
                best_val = A[i], best_index = i;

        TreeNode* retNode = new TreeNode(A[best_index]);
        retNode->left = construct(A, l, best_index - 1);
        retNode->right = construct(A, best_index + 1, r);
        return retNode;
    }

    void dfs(TreeNode* root, vector<int>& A){

        if(!root) return;
        dfs(root->left, A);
        A.push_back(root->val);
        dfs(root->right, A);
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值