torchvision detection/ mmdetection目标检测模块特征可视化

pytorch: 1.9.0
torchvision: 0.10
mmdetection: 2.15.0
mmcv: 1.3.10

测试图片(图片大小:720x1280):在这里插入图片描述

之前博主写过一篇pytorch模型特征可视化的博文:pytorch卷积网络特征图可视化 ,本篇博文想记录一下目标检测模型的特征图可视化,这个在很多OD的论文上都可以看到CAM图,其实操作起来和前面博文介绍的基本一致,主要是看选取哪层conv的输出作为特征,然后经过颜色转换后叠加到原图去,获取特征图的方法主要用到钩子函数,顾名思义,将特征量从forward前向运算过程中“勾出”来。

1.torchvision.models.detection检测模型

话不多说,直接上代码:

# -*- coding: utf-8 -*-
"""
Created on Fri Aug  6 11:10:41 2021

@author: Wenqing Zhou (zhou.wenqing@qq.com)
@github: https://github.com/ouening

参考链接:
1.https://blog.youkuaiyun.com/cl2227619761/article/details/106577306/
2.https://zhuanlan.zhihu.com/p/87853615
"""

import torch
import numpy as np
from PIL import Image
from torchvision import transforms, models
import matplotlib.cm
from torchinfo import summary
import copy
import cv2
import matplotlib.pyplot as plt

device = 'cuda' if torch.cuda.is_available() else 'cpu'

module_name = []
p_in = []
p_out = []

# 定义hook_fn,顾名思义就是把数值从forward计算过程中“勾出”来
def hook_fn(module, inputs, outputs):
    module_name.append(module.__class__)
    print(module)
    p_in.append(inputs)
    p_out.append(outputs)


#%% 加载模型,注册钩子函数

# model = models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
# model.rpn.head.cls_logits.register_forward_hook(hook_fn) # faster_rcnn

## Retinanet
# model = models.detection.retinanet_resnet50_fpn(pretrained=True)
# model.head.classification_head.cls_logits.register_forward_hook(hook_fn)

## SSD300 VGG16
model = models.detection.ssd300_vgg16(pretrained=True)
model.head.classification_head.register_forward_hook(hook_fn)

# print(summary(model, (1,3,300,300), verbose=1))
#%%
# 导入一张图像
img_file = r"C:\Users\gaoya\Pictures\elephant_1280p.jpg"
img = Image.open(img_file)
ori_img = img.copy()

# 必要的前处理
transform = transforms.Compose([
                # transforms.Resize((416,416)),
				transforms.ToTensor(),
				transforms.Normalize(
					[0.485, 0.456, 0.406],
					[0.229, 0.224, 0.225])])
img = transform(img).unsqueeze(0)  # 增加batch维度

model.to(device)
img = img.to(device) # torch.Size([1, 3, 720, 1280])
# EVAL模式
model.eval()
with torch.no_grad():
    model(img)

#%% 特征可视化
def show_feature_map(img_src, conv_features):
    '''可视化卷积层特征图输出
    img_src:源图像文件路径
    conv_feature:得到的卷积输出,[b, c, h, w]
    '''
    img = Image.open(img_file).convert('RGB')
    height, width = img.size
    conv_features = conv_features.cpu()

    heat = conv_features.squeeze(0)#降维操作,尺寸变为(C,H,W)
    heatmap = torch.mean(heat,dim=0)#对各卷积层(C)求平均值,尺寸变为(H,W)
    # heatmap = torch.max(heat,dim=1).values.squeeze()

    heatmap = heatmap.numpy()#转换为numpy数组
    heatmap = np.maximum(heatmap, 0)
    heatmap /= np.max(heatmap)#minmax归一化处理
    heatmap = cv2.resize(heatmap,(img.size[0],img.size[1]))#变换heatmap图像尺寸,使之与原图匹配,方便后续可视化
    heatmap = np.uint8(255*heatmap)#像素值缩放至(0,255)之间,uint8类型,这也是前面需要做归一化的原因,否则像素值会溢出255(也就是8位颜色通道)
    heatmap = cv2.applyColorMap(heatmap,cv2.COLORMAP_HSV)#颜色变换
    plt.imshow(heatmap)
    plt.show()
    # heatmap = np.array(Image.fromarray(heatmap).convert('L'))
    superimg = heatmap*0.4+np.array(img)[:,:,::-1] #图像叠加,注意翻转通道,cv用的是bgr
    cv2.imwrite('./superimg.jpg',superimg)#保存结果
    # 可视化叠加至源图像的结果
    img_ = np.array(Image.open('./superimg.jpg').convert('RGB'))
    plt.imshow(img_)
    plt.show()

model_str = model.__str__()

if model_str.startswith('SSD'):
    for k in range(len(module_name)):
        for j in range(len(p_in[0][0])):
            print(p_in[k][0][j].shape)
            print(p_out[k].shape)
            show_feature_map(img_file, p_in[k][0][j])
            # show_feature_map(img_file, torch.sigmoid(p_out[k]))
            print()

if model_str.startswith('RetinaNet'): # retinanet
    for k in range(len(module_name)):# 不同尺寸的特征图
        print(p_in[k][0].shape)
        print(p_out[k].shape)
        # show_feature_map(img_file, p_in[k][j])
        show_feature_map(img_file, torch.sigmoid(p_out[k]))
        print()

if model_str.startswith('FasterRCNN'): # FasterRCNN
    for k in range(len(module_name)):
        print(p_in[k][0].shape)
        print(p_out[k].shape)
        # show_feature_map(img_file, p_in[k][0])
        show_feature_map(img_file, torch.sigmoid(p_out[k]))
        print()

print(summary(model, (1,3,300,300), verbose=1))

1.1 Faster RCNN的结果:

P2 -P6的输入输出特征维度:

torch.Size([1, 256, 192, 336])
torch.Size([1, 3, 192, 336])

torch.Size([1, 256, 96, 168])
torch.Size([1, 3, 96, 168])

torch.Size([1, 256, 48, 84])
torch.Size([1, 3, 48, 84])

torch.Size([1, 256, 24, 42])
torch.Size([1, 3, 24, 42])

torch.Size([1, 256, 12, 21])
torch.Size([1, 3, 12, 21])

在这里插入图片描述

1.2 RetinaNet结果

torch.Size([1, 256, 96, 168])
torch.Size([1, 819, 96, 168])

torch.Size([1, 256, 48, 84])
torch.Size([1, 819, 48, 84])

torch.Size([1, 256, 24, 42])
torch.Size([1, 819, 24, 42])

torch.Size([1, 256, 12, 21])
torch.Size([1, 819, 12, 21])

torch.Size([1, 256, 6, 11])
torch.Size([1, 819, 6, 11])

主要输出通道数为819,因为9个anchor乘以91类=819.
在这里插入图片描述

1.3 SSD300

torch.Size([1, 512, 38, 38])
torch.Size([1, 8732, 91])

torch.Size([1, 1024, 19, 19])
torch.Size([1, 8732, 91])

torch.Size([1, 512, 10, 10])
torch.Size([1, 8732, 91])

torch.Size([1, 256, 5, 5])
torch.Size([1, 8732, 91])

torch.Size([1, 256, 3, 3])
torch.Size([1, 8732, 91])

torch.Size([1, 256, 1, 1])
torch.Size([1, 8732, 91])

在这里插入图片描述

2.mmdetection retinanet

mmdetection实现的retinanet模型配置文件和权重可以从以下地址下载:

https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet

详细介绍可以参考:

https://mingming97.github.io/2019/03/29/mmdetection%20retinanet/

特征可视化代码如下:

# -*- coding: utf-8 -*-
"""
Created on Fri Aug  6 15:31:30 2021

@author: Wenqing Zhou (zhou.wenqing@qq.com)
@github: https://github.com/ouening
"""

import torch
import numpy as np
from PIL import Image
from torchvision import transforms, models
import matplotlib.cm
from torchinfo import summary
import copy
import cv2
import matplotlib.pyplot as plt
from argparse import ArgumentParser

from mmdet.apis import (inference_detector,
                        init_detector, show_result_pyplot)

device = 'cpu'
config = r"D:\Github\mmdetection\configs\retinanet\retinanet_r50_fpn_1x_coco.py"
ckpt = r"E:\Downloads\retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth"
img = r"elephant_1280p.jpg"
score_thr = 0.8

# build the model from a config file and a checkpoint file
model = init_detector(config, ckpt, device=device)

#%%
# 定义列表用于存储中间层的输入或者输出
module_name = []
p_in = []
p_out = []

# 定义hook_fn,顾名思义就是把数值从
def hook_fn(module, inputs, outputs):
    print(module_name)
    module_name.append(module.__class__)
    p_in.append(inputs)
    p_out.append(outputs)

model.bbox_head.retina_cls.register_forward_hook(hook_fn)

# test a single image
result = inference_detector(model, img)
# show the results
show_result_pyplot(model, img, result, score_thr=score_thr)

#%%
def show_feature_map(img_src, conv_features):
    '''可视化卷积层特征图输出
    img_src:源图像文件路径
    conv_feature:得到的卷积输出,[b, c, h, w]
    '''
    img = Image.open(img_src).convert('RGB')
    height, width = img.size
    conv_features = conv_features.cpu()

    heat = conv_features.squeeze(0)#降维操作,尺寸变为(2048,7,7)
    heatmap = torch.mean(heat,dim=0)#对各卷积层(2048)求平均值,尺寸变为(7,7)
    # heatmap = torch.max(heat,dim=1).values.squeeze()

    heatmap = heatmap.numpy()#转换为numpy数组
    heatmap = np.maximum(heatmap, 0)
    heatmap /= np.max(heatmap)#minmax归一化处理
    heatmap = cv2.resize(heatmap,(img.size[0],img.size[1]))#变换heatmap图像尺寸,使之与原图匹配,方便后续可视化
    heatmap = np.uint8(255*heatmap)#像素值缩放至(0,255)之间,uint8类型,这也是前面需要做归一化的原因,否则像素值会溢出255(也就是8位颜色通道)
    heatmap = cv2.applyColorMap(heatmap,cv2.COLORMAP_HSV)#颜色变换
    plt.imshow(heatmap)
    plt.show()
    # heatmap = np.array(Image.fromarray(heatmap).convert('L'))
    superimg = heatmap*0.4+np.array(img)[:,:,::-1] #图像叠加,注意翻转通道,cv用的是bgr
    cv2.imwrite('./superimg.jpg',superimg)#保存结果
    # 可视化叠加至源图像的结果
    img_ = np.array(Image.open('./superimg.jpg').convert('RGB'))
    plt.imshow(img_)
    plt.show()

model_str = model.__str__()

if model_str.startswith('SSD'):
    for k in range(len(module_name)):
        for j in range(len(p_in[0][0])):
            print(p_in[k][0][j].shape)
            # print(p_out[k].shape)
            show_feature_map(img, p_in[k][0][j])
            # show_feature_map(img_file, torch.sigmoid(p_out[k]))
            print()

else:
    for k in range(len(module_name)):
        print(p_in[k][0].shape)
        print(p_out[k].shape)
        # show_feature_map(img_file, p_in[k][0])
        show_feature_map(img, torch.sigmoid(p_out[k]))
        print()
 torch.Size([1, 256, 96, 168])
torch.Size([1, 720, 96, 168])

torch.Size([1, 256, 48, 84])
torch.Size([1, 720, 48, 84])

torch.Size([1, 256, 24, 42])
torch.Size([1, 720, 24, 42])

torch.Size([1, 256, 12, 21])
torch.Size([1, 720, 12, 21])

torch.Size([1, 256, 6, 11])
torch.Size([1, 720, 6, 11])

mmdetection训练用的coco数据集是80类,也去除了背景,anchor为9个,所以输出通道是720.


关键是:model.bbox_head.retina_cls.register_forward_hook(hook_fn),这个需要先将模型打印出来,看看需要在哪个卷积模块注册钩子函数。

在这里插入图片描述
参考链接:
1.https://blog.youkuaiyun.com/cl2227619761/article/details/106577306/
2.https://zhuanlan.zhihu.com/p/87853615
3.https://mingming97.github.io/2019/03/29/mmdetection%20retinanet/

<think>嗯,用户问的是关于mmdetection的问题,我需要先回想一下这个框架的基本信息。mmdetection是商汤科技开源的基于PyTorch的目标检测工具箱,对吧?我记得它支持很多模型,比如Faster R-CNN、Mask R-CNN,还有后来的YOLO系列可能也加入了。用户可能想知道它的特点、用途或者如何安装使用。 首先,我应该介绍mmdetection是什么,它的主要功能和特点。比如模块化设计,支持多种任务,还有丰富的预训练模型。然后,可能需要提到安装步骤,依赖项比如PyTorch和CUDA的版本。接着,给出一个简单的示例代码,展示如何用现成的模型进行推理。这样用户能快速上手。 然后,解释部分需要详细说明每个步骤,比如安装时需要注意版本兼容性,Config和Checkpoint文件的作用。示例代码中的inference_detector函数的使用,以及如何可视化结果。可能还要提醒常见问题,比如环境配置错误或者模型下载的问题。 接下来,相关的问题应该围绕mmdetection的扩展功能,比如支持的模型、自定义数据集的方法、训练流程、部署方式,以及与其他框架的比较。这些是用户可能会进一步询问的方向,需要提前准备好。 检查有没有遗漏的信息,比如是否提到mmdetection3D,或者最新的特性。确保给出的代码正确,比如导入正确的包,使用适当的模型名称。可能还需要注意代码中的路径是否正确,是否需要用户自行替换图片路径。 最后,确保回答结构清晰,分点明确,解释到位,并且相关的问题能够引导用户深入学习。可能需要检查是否有术语错误,比如模块化设计、模型动物园等是否正确使用。</think><< mmdetection 是商汤科技开源的基于 PyTorch 的目标检测工具箱,支持目标检测、实例分割、全景分割等任务。它提供了丰富的预训练模型和模块化设计,具有以下核心特性: 1. **模块化架构**: 支持灵活组合 Backbone(ResNet/Swin Transformer等)、Neck(FPN/PAN等)、Head(RetinaHead/FCOSHead等)和损失函数 示例配置: ```python model = dict( type='MaskRCNN', backbone=dict(type='ResNet', depth=50), neck=dict(type='FPN', in_channels=[256, 512, 1024, 2048]), rpn_head=dict(type='RPNHead', anchor_generator=dict(type='AnchorGenerator')), roi_head=dict(type='StandardRoIHead') ) ``` 2. **丰富模型库**: - 支持 100+ 预训练模型(Faster R-CNN、Mask R-CNN、YOLOX、DETR等) - 包含 COCO、Pascal VOC 等数据集上的 SOTA 模型 3. **高效训练**: 支持分布式训练、混合精度训练、模型压缩等技术 示例训练命令: ```bash ./tools/dist_train.sh configs/faster_rcnn_r50_fpn_1x_coco.py 8 ``` 4. **扩展性强**: - 支持自定义数据集 - 可轻松实现新算法 - 提供 hooks 机制扩展训练流程 **安装示例**: ```bash # 需要先安装正确版本的PyTorch conda install pytorch torchvision -c pytorch pip install mmcv-full pip install mmdet ``` **快速推理示例**: ```python from mmdet.apis import init_detector, inference_detector config_file = 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' model = init_detector(config_file, checkpoint_file, device='cuda:0') img = 'test.jpg' result = inference_detector(model, img) model.show_result(img, result, out_file='result.jpg') ``` **典型问题解决方案**: 1. CUDA out of memory:减小 batch_size,使用--auto-scale-lr 自动调整学习率 2. 验证指标异常:检查数据集格式是否正确(使用tools/dataset_converters转换) 3. 训练不收敛:尝试官方提供的标准配置,确认数据增强策略 >>
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值