记录一个菜逼的成长。。
A,B水题。
C. Journey
题目大意:
给你N个点M条边的DAG,有T的时间限制.接下来M行(u,v,t)代表从u到v的时间为t。你站在1点 ,问到n点,不超过T时间最多走过几个点,并输出路径。
跟拓扑排序很像,加上dp。
dp[i][j] := 站在i点,走过j个点的最短时间。
显然dp[i][j] = min(dp[i][j] + t[i],dp[to[i]][j+1]);
path[i][j] := 站在i点,走过j个点的前面那个点。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
#include <cstdlib>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <list>
#include <deque>
#include <cctype>
#include <bitset>
#include <cmath>
using namespace std;
#define ALL(v) (v).begin(),(v).end()
#define cl(a,b) memset(a,b,sizeof(a))
#define bp __builtin_popcount
#define pb push_back
#define fin freopen("D://in.txt","r",stdin)
#define fout freopen("D://out.txt","w",stdout)
#define lson t<<1,l,mid
#define rson t<<1|1,mid+1,r
#define seglen (node[t].r-node[t].l+1)
#define pi 3.1415926
#define e 2.718281828459
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;
typedef pair<LL,LL> PLL;
typedef vector<PII> VPII;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
template <typename T>
inline void read(T &x){
T ans=0;
char last=' ',ch=getchar();
while(ch<'0' || ch>'9')last=ch,ch=getchar();
while(ch>='0' && ch<='9')ans=ans*10+ch-'0',ch=getchar();
if(last=='-')ans=-ans;
x = ans;
}
inline bool DBread(double &num)
{
char in;double Dec=0.1;
bool IsN=false,IsD=false;
in=getchar();
if(in==EOF) return false;
while(in!='-'&&in!='.'&&(in<'0'||in>'9'))
in=getchar();
if(in=='-'){IsN=true;num=0;}
else if(in=='.'){IsD=true;num=0;}
else num=in-'0';
if(!IsD){
while(in=getchar(),in>='0'&&in<='9'){
num*=10;num+=in-'0';}
}
if(in!='.'){
if(IsN) num=-num;
return true;
}else{
while(in=getchar(),in>='0'&&in<='9'){
num+=Dec*(in-'0');Dec*=0.1;
}
}
if(IsN) num=-num;
return true;
}
template <typename T>
inline void write(T a) {
if(a < 0) { putchar('-'); a = -a; }
if(a >= 10) write(a / 10);
putchar(a % 10 + '0');
}
/******************head***********************/
const int maxn = 5000 + 10;
int head[maxn],cnt;
int path[maxn][maxn],dp[maxn][maxn],indegree[maxn];
int n,m,T;
struct Edge{
int to,next,w;
}edge[maxn];
void add(int u,int v,int w)
{
edge[cnt].to = v;
edge[cnt].w = w;
edge[cnt].next = head[u];
head[u] = cnt++;
}
void init()
{
cl(head,-1);
cl(path,0);
cl(indegree,0);
for( int i = 1; i <= n; i++ ){
for( int j = 1; j <= n; j++ ){
dp[i][j] = INF;
}
}
}
void print_path(int num)
{
stack<int>s;
int i = n,j = num;
while(path[i][j]){
s.push(i);
i = path[i][j];
j--;
}
int flag = 1;
s.push(1);
while(!s.empty()){
if(flag){
printf("%d",s.top());
s.pop();
flag = 0;
}
else {
printf(" %d",s.top());
s.pop();
}
}
puts("");
}
void solve()
{
queue<int>q;
dp[1][1] = 0;
for( int i = 1; i <= n; i++ )
if(!indegree[i])q.push(i);
while(!q.empty()){
int f = q.front();q.pop();
for( int i = head[f]; ~i; i = edge[i].next){
int v = edge[i].to,w = edge[i].w;
for( int j = 1; j <= n; j++ ){
if(dp[f][j] + w < dp[v][j+1]){
dp[v][j+1] = dp[f][j] + w;
path[v][j+1] = f;
}
}
if(!--indegree[v])
q.push(v);
}
}
for( int i = n; i > 0; i-- ){
if(dp[n][i] <= T){
printf("%d\n",i);
print_path(i);
break;
}
}
}
int main()
{
while(~scanf("%d%d%d",&n,&m,&T)){
init();
for( int i = 0; i < m; i++ ){
int u,v,t;
scanf("%d%d%d",&u,&v,&t);
add(u,v,t);
indegree[v]++;
}
solve();
}
return 0;
}