25、直流微电网技术:控制、保护与应用

直流微电网技术:控制、保护与应用

分布式控制与直流微电网概述

分布式控制在直流微电网中具有重要意义。图论中的图拉普拉斯矩阵能明确反映通信网络的拓扑结构,通过设计矩阵权重,还可控制收敛速度。分布式控制可实现与集中式控制相当的信息感知,能轻松达成输出电流共享、电压恢复、全局效率提升、荷电状态(SoC)平衡等目标。相较于分散式控制,分布式控制功能更广泛,且能避免单点故障问题。不过,其主要局限在于分析性能时较为复杂,尤其是在存在通信时延和测量误差的非理想环境下,评估收敛速度和稳定裕度颇具挑战。

直流微电网系统保护

尽管直流系统相较于交流系统有诸多优势,但其保护设计仍是一大挑战。其中,保护装置跳闸时产生的直流电弧难以熄灭是关键难题,而且目前对于直流系统的运行问题,人们的理解和经验普遍不足,因此尚未形成广泛认可的保护标准和指南。下面从四个主要方面介绍直流微电网的保护。

故障类型

直流电力系统存在两种基本故障类型:接地故障和线间故障。接地故障虽相对不严重,但在工业配电系统中更为常见,其故障阻抗可能高也可能低;而线间故障通常阻抗较低。不同位置的故障影响各异,例如,母线故障比馈线故障更危险,因为母线故障会影响所有与之相连的馈线。

设计保护系统时,需确定所有可能的故障位置,并计算每个位置的故障电流。系统内的所有有源电源都会参与总故障电流的形成,其实际贡献取决于电源与故障位置之间的有效阻抗。以下是不同情况下故障电流的计算方式:
- 直接连接电池的贡献 :当电池通过电缆直接连接到公共直流母线时,在母线故障情况下,电池的电流贡献可表示为:
[i_{bat}(t) = \frac{u

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制问题,并提供完整的Matlab代码实现。文章结合数据驱动方法Koopman算子理论,利用递归神经网络(RNN)对非线性系统进行建模线性化处理,从而提升纳米级定位系统的精度动态响应性能。该方法通过提取系统隐含动态特征,构建近似线性模型,便于后续模型预测控制(MPC)的设计优化,适用于高精度自动化控制场景。文中还展示了相关实验验证仿真结果,证明了该方法的有效性和先进性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事精密控制、智能制造、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能控制设计;②为非线性系统建模线性化提供一种结合深度学习现代控制理论的新思路;③帮助读者掌握Koopman算子、RNN建模模型预测控制的综合应用。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现流程,重点关注数据预处理、RNN结构设计、Koopman观测矩阵构建及MPC控制器集成等关键环节,并可通过更换实际系统数据进行迁移验证,深化对方法泛化能力的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值