雷达图像分类中的Wishart和Rician混合模型
1. 结构化协方差估计
在某些场景下,为确保估计的结构化协方差为正定,可对估计的协方差带内分量进行修改,使其满足条件:
[C_{ii}^2 \geq \sum_{j\neq1}^{J} C_{ij}^2]
具体的修改方式有:
- 方式一:将非对角元素修改为 (C_{ij} \to C_{ij} \cdot \exp{-\alpha \cdot |i - j|}),其中 (\alpha > \ln 2)。
- 方式二:将非对角元素修改为 (C_{ij} \to C_{ij}/|i - j|)。
不过,这些临时技术会损失一些相关性中的信息。更有利的方法是基于协方差矩阵的Choleski因子估计来估计结构化协方差。
2. 合成孔径雷达(SAR)
合成孔径雷达(SAR)通常安装在飞机上,其工作过程可简化描述如下:
- 发射脉冲 :雷达发射相对短且宽角度(约几十度)的电磁波脉冲,垂直于飞行方向,表达式为 (Re\left{a(t) \exp (-2\pi if_0t)\right}),其中 (a(t)) 是已知调制幅度,(f_0) 是载波频率。
- 反射脉冲 :地面特征、树木或搜索目标等反射器会返回反射脉冲 (Re {k_n \cdot a (t - \tau_n) \exp [-2\pi if_n (t - \tau_n)]}),其中 (k_n) 是反射系数,(f_n) 是返回脉冲的频率,(\tau_n) 是时间延迟。频率 (f_n) 因多普勒频移与 (f_0) 不同,计
超级会员免费看
订阅专栏 解锁全文
32

被折叠的 条评论
为什么被折叠?



