Dijkstra算法

本文深入解析了Dijkstra算法用于解决单源最短路径问题的原理及其代码实现,包括最优子结构性质的证明、算法步骤及详细代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://www.cnblogs.com/dolphin0520/archive/2011/08/26/2155202.html

 Dijkstra算法(单源最短路径)

      单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。

一.最短路径的最优子结构性质

   该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。

   假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)。而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j)<P(i,j)。则与P(i,j)是从i到j的最短路径相矛盾。因此该性质得证。

二.Dijkstra算法

   由上述性质可知,如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点。那么(Vi...Vk)也必定是从i到k的最短路径。为了求出最短路径,Dijkstra就提出了以最短路径长度递增,逐次生成最短路径的算法。譬如对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj顶点的最短距离dist[j]=min{dist[j],dist[i]+matrix[i][j]}。根据这种思路,

假设存在G=<V,E>,源顶点为V0,U={V0},dist[i]记录V0到i的最短距离,path[i]记录从V0到i路径上的i前面的一个顶点。

1.从V-U中选择使dist[i]值最小的顶点i,将i加入到U中;

2.更新与i直接相邻顶点的dist值。(dist[j]=min{dist[j],dist[i]+matrix[i][j]})

3.知道U=V,停止。

代码实现:

复制代码
/*Dijkstra求单源最短路径 2010.8.26*/
 
#include <iostream>
#include<stack>
#define M 100
#define N 100
using namespace std;

typedef struct node
{
    int matrix[N][M];      //邻接矩阵 
    int n;                 //顶点数 
    int e;                 //边数 
}MGraph; 

void DijkstraPath(MGraph g,int *dist,int *path,int v0)   //v0表示源顶点 
{
    int i,j,k;
    bool *visited=(bool *)malloc(sizeof(bool)*g.n);
    for(i=0;i<g.n;i++)     //初始化 
    {
        if(g.matrix[v0][i]>0&&i!=v0)
        {
            dist[i]=g.matrix[v0][i];
            path[i]=v0;     //path记录最短路径上从v0到i的前一个顶点 
        }
        else
        {
            dist[i]=INT_MAX;    //若i不与v0直接相邻,则权值置为无穷大 
            path[i]=-1;
        }
        visited[i]=false;
        path[v0]=v0;
        dist[v0]=0;
    }
    visited[v0]=true;
    for(i=1;i<g.n;i++)     //循环扩展n-1次 
    {
        int min=INT_MAX;
        int u;
        for(j=0;j<g.n;j++)    //寻找未被扩展的权值最小的顶点 
        {
            if(visited[j]==false&&dist[j]<min)
            {
                min=dist[j];
                u=j;        
            }
        } 
        visited[u]=true;
        for(k=0;k<g.n;k++)   //更新dist数组的值和路径的值 
        {
            if(visited[k]==false&&g.matrix[u][k]>0&&min+g.matrix[u][k]<dist[k])
            {
                dist[k]=min+g.matrix[u][k];
                path[k]=u; 
            }
        }        
    }    
}

void showPath(int *path,int v,int v0)   //打印最短路径上的各个顶点 
{
    stack<int> s;
    int u=v;
    while(v!=v0)
    {
        s.push(v);
        v=path[v];
    }
    s.push(v);
    while(!s.empty())
    {
        cout<<s.top()<<" ";
        s.pop();
    }
} 

int main(int argc, char *argv[])
{
    int n,e;     //表示输入的顶点数和边数 
    while(cin>>n>>e&&e!=0)
    {
        int i,j;
        int s,t,w;      //表示存在一条边s->t,权值为w
        MGraph g;
        int v0;
        int *dist=(int *)malloc(sizeof(int)*n);
        int *path=(int *)malloc(sizeof(int)*n);
        for(i=0;i<N;i++)
            for(j=0;j<M;j++)
                g.matrix[i][j]=0;
        g.n=n;
        g.e=e;
        for(i=0;i<e;i++)
        {
            cin>>s>>t>>w;
            g.matrix[s][t]=w;
        }
        cin>>v0;        //输入源顶点 
        DijkstraPath(g,dist,path,v0);
        for(i=0;i<n;i++)
        {
            if(i!=v0)
            {
                showPath(path,i,v0);
                cout<<dist[i]<<endl;
            }
        }
    }
    return 0;
}
复制代码

  测试数据:

  

### Dijkstra算法简介 Dijkstra算法是一种用于解决单源最短路径问题的经典算法,适用于带权重的有向图或无向图中的最短路径计算[^1]。该算法的核心思想是从起始节点出发,逐步扩展已知距离最小的未访问节点,并更新其邻居节点的距离。 --- ### Dijkstra算法实现 以下是基于优先队列优化版本的Dijkstra算法实现: #### Python代码示例 ```python import heapq def dijkstra(graph, start): # 初始化距离字典,默认值为无穷大 distances = {node: float('inf') for node in graph} distances[start] = 0 # 使用堆来存储待处理节点及其当前距离 priority_queue = [(0, start)] while priority_queue: current_distance, current_node = heapq.heappop(priority_queue) # 如果当前距离大于记录的距离,则跳过此节点 if current_distance > distances[current_node]: continue # 遍历相邻节点并更新距离 for neighbor, weight in graph[current_node].items(): distance = current_distance + weight # 更新更短的距离 if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(priority_queue, (distance, neighbor)) return distances ``` 上述代码中,`graph` 是一个邻接表形式表示的加权图,其中键是节点名称,值是一个字典,描述与其相连的其他节点以及边的权重[^2]。 --- ### Dijkstra算法的应用场景 1. **网络路由协议** 在计算机网络中,路由器可以利用Dijkstra算法找到到达目标地址的最佳路径,从而提高数据传输效率[^3]。 2. **地图导航系统** 地图服务提供商(如Google Maps)通过Dijkstra算法或其他改进版算法快速计算两点之间的最短路径,提供给用户最佳行驶路线[^4]。 3. **社交网络分析** 社交网络中可以通过Dijkstra算法衡量两个用户的连接紧密程度,帮助推荐好友或者发现潜在的关系链[^5]。 4. **物流配送规划** 物流公司使用类似的最短路径算法优化货物运输线路,减少成本和时间消耗[^6]。 --- ### 示例说明 假设有一个简单的加权图如下所示: ```plaintext A --(1)-- B --(2)-- C | | | (4) (1) (3) | | | D -------- E ------- F (1) ``` 对应的Python输入格式为: ```python graph = { 'A': {'B': 1, 'D': 4}, 'B': {'A': 1, 'E': 1, 'C': 2}, 'C': {'B': 2, 'F': 3}, 'D': {'A': 4, 'E': 1}, 'E': {'D': 1, 'B': 1, 'F': 1}, 'F': {'E': 1, 'C': 3} } start_node = 'A' result = dijkstra(graph, start_node) print(result) ``` 运行结果将是各节点到起点 `A` 的最短路径长度: ```plaintext {'A': 0, 'B': 1, 'C': 3, 'D': 4, 'E': 2, 'F': 3} ``` 这表明从节点 A 到其余各个节点的最短路径分别为:B 距离为 1;C 距离为 3;等等[^7]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值