招行 FinTech 学习笔记-Keras

这篇博客详细介绍了Keras中的卷积层和最大池化层。卷积层参数包括过滤器数量、卷积窗口大小、步长和激活函数,强调了ReLU激活函数的重要性。最大池化层则需指定池化窗口尺寸和步长,讨论了'valid'和'same'两种填充方式的影响。

Keras 中的卷积层

参考引用:Udacity

from keras.layers import Conv2D
Conv2D(filters, kernel_size, strides, padding, activation='relu', input_shape)

参数

必须传递以下参数:

  • filters - 过滤器数量。
  • kernel_size - 指定(方形)卷积窗口的高和宽的数字。

你可能还需要调整其他可选参数:

  • strides - 卷积 stride。如果不指定任何值,则 strides 设为 1
  • padding - 选项包括 'valid' 和 'same'。如果不指定任何值,则 padding 设为 'valid'
  • activation - 通常为 'relu'。如果未指定任何值,则不应用任何激活函数。强烈建议你向网络中的每个卷积层添加一个 ReLU 激活函数。

注意:可以将 kernel_size 和 strides 表示为数字或元组。

在模型中将卷积层当做第一层级(出现在输入层之后)时,必须提供另一个 input_shape 参数:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值