Codeforces 429E(欧拉回路)

本文探讨了如何解决线段染色问题,通过差分思想和图论方法,确保数轴上任意点被不同颜色线段覆盖次数之差不大于1。文章详细介绍了算法步骤,包括离散化处理、构建图模型、连接奇数度节点并运行欧拉回路。

题面

传送门
题目大意:
有n条线段,每条线段染红色或蓝色,使得数轴上每个点被红色线段覆盖的次数与被蓝色线段覆盖数差的绝对值小于等于1。输出染色方案。

分析

题意其实可以这样理解:
一段初始全为0 的序列a,给区间 [li,ri] [ l i , r i ] +1或-1,使得操作结束后序列中的所有位置绝对值不超过1
可采用差分的思想,给 al+1,ar+11 a l + 1 , a r + 1 − 1 把区间操作转化成单点操作
因此我们可以建图来模拟这个过程,从l到r+1连一条边,每个点的值就是入度与出度的差
建完图后,会出现多个连通块,若联通块是欧拉回路,则区间值为0
但是,图中会存在许多奇数度的点,必须要连边.
如果从一个奇点到另一个奇点连一条边,如果区间内还有一个奇点,则该点可能会被一种颜色覆盖多次,导致绝对值大于1
所以只能将相邻的奇点连边

总结:
1.线段右端点+1,离散化
2.将相邻奇数点连边,跑欧拉回路
3.输出方案,如果边是从左到右的,输出0,否则输出1

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<stack>
#define maxn 200005
using namespace std;
int n;
struct seg{
    int l;
    int r;
    int dl;
    int dr;
}a[maxn];
int m=0;
int tmp[maxn<<2];
int deg[maxn];
struct edge{
    int from;
    int to;
    int next;
}E[maxn<<2];
int size=1;//从1开始存,这样一对反向边会存储在i和i^1的位置
int head[maxn];
int dir[maxn<<2];//记录每条边的方向
int used[maxn];
void add_edge(int u,int v){
    size++;
    E[size].from=u;
    E[size].to=v;
    E[size].next=head[u];
    head[u]=size;
}

void dfs(int x){
//  printf("%d\n",x);
    used[x]=1;
    for(int i=head[x];i;i=E[i].next){
        if(dir[i>>1]==-1){
            dir[i>>1]=(i&1)^1;//如果i%2==1,则是从左到右的边,dir=0,否则dir=1
            dfs(E[i].to);
        }
    }
}
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d %d",&a[i].l,&a[i].r);//区间很大,必须离散化
        a[i].r++;
        tmp[++m]=a[i].l;
        tmp[++m]=a[i].r;
    }
    sort(tmp+1,tmp+1+m);
    m=unique(tmp+1,tmp+1+m)-tmp-1;
    for(int i=1;i<=n;i++){
        a[i].dl=lower_bound(tmp+1,tmp+1+m,a[i].l)-tmp;
        a[i].dr=lower_bound(tmp+1,tmp+1+m,a[i].r)-tmp;
        add_edge(a[i].dl,a[i].dr);//连边
        add_edge(a[i].dr,a[i].dl);
        deg[a[i].dl]++;
        deg[a[i].dr]++;
    }
//  printf("%d\n",m);
    int pre=0;
    for(int i=1;i<=m;i++){
        if(deg[i]%2&&pre!=0){//相邻的奇数点连边
            add_edge(i,pre);
            add_edge(pre,i);
            pre=0;
        }else if(deg[i]%2){
            pre=i;
        }
    }
    for(int i=1;i<=size/2;i++){
        dir[i]=-1;
    }
    for(int i=1;i<=m;i++){
        if(!used[i]) dfs(i);//欧拉回路
    }
    for(int i=1;i<=n;i++){
        printf("%d ",dir[i]);
    }
}
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值