62、不同路径
讲解:https://programmercarl.com/0062.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE%84.html
动态规划经典,不过注意这里的初始化,第一行和第一列都是1,因为只能向右和向下走,因此第一行和第一列所有格点都只有一种方案抵达。
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp (m, vector<int>(n, 0));
for (int i=0;i <m;i++) dp[i][0] = 1;
for (int j=0;j <n;j++) dp[0][j] = 1;
for (int i=1; i<m;i++){
for (int j=1; j<n;j++){
dp[i][j] = dp[i][j-1] + dp[i-1][j];
}
}
return dp[m-1][n-1];
}
};
63、不同路径II
讲解:https://programmercarl.com/0063.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE%84II.html
cv大法。
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0
return 0;
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) continue;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};