Key Task HDU - 1885

本文通过状态压缩的方法解决了一个迷宫逃脱问题,采用C++实现。重点介绍了如何使用位操作来记录不同类型的钥匙,并利用队列进行广度优先搜索以找到最短的逃脱路径。

题意


自己的思路错了,我想着每次找到新的钥匙就memset  vis 为0,但是其实是不可以的。。(自己其实应该花一定时间悄悄主代码,然后就应该是看看那别人的代码的,这样自己就不用花那么多时间的。(自己要把时间用在提升的地方,比如抄书的地方是没用的。)

这里看了别人的用状态压缩的方法,,

然后两个judge  还能用来加钥匙, 判断钥匙有没有,,然后vis表示的时候是拥有这些钥匙的时候经过这里。


#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<string>
#include<cstring>
#include<iomanip>
#include<iostream>
#include<stack>
#include<cmath>
#include<map>
#include<vector>
#define ll long long
#define inf 0x3f3f3f3f
#define INF 1000000000
#define bug1 cout<<"bug1"<<endl;
#define bug2 cout<<"bug2"<<endl;
#define bug3 cout<<"bug3"<<endl;
using namespace std;

const int N=105;
int n,m,sx,sy,ex,ey;
char g[N][N];
bool vis[N][N][16];
int dir[4][2]={{1,0},{-1,0},{0,1},{0,-1}};
struct node
{
    int x,y,key,step;
};
int judged(char ch)
{
    if(ch=='B')return 1<<0;
    if(ch=='Y')return 1<<1;
    if(ch=='R')return 1<<2;
    if(ch=='G')return 1<<3;
}
int judgek(char ch)
{
    if(ch=='b')return 1<<0;
    if(ch=='y')return 1<<1;
    if(ch=='r')return 1<<2;
    if(ch=='g')return 1<<3;  //这个地方的状态压缩很好。
    return 0;
}
bool judgeok(node t){
    if(t.x<1||t.x>n||t.y<1||t.y>m||g[t.x][t.y]=='#'||vis[t.x][t.y][t.key])return false;
    return true;

}

void solve(){
    memset(vis,0,sizeof(vis));
    queue<node>q;
    node u,v;
    u.x=sx;u.y=sy;u.key=0;u.step=0;vis[u.x][u.y][u.key]=1;
    q.push(u);
    while(!q.empty()){
        u=q.front();q.pop();
        if(g[u.x][u.y]=='X'){printf("Escape possible in %d steps.\n",u.step);return;}
        for(int i=0;i<4;++i){
            v.x=u.x+dir[i][0];v.y=u.y+dir[i][1];v.step=u.step+1;v.key=u.key|judgek(g[v.x][v.y]);
            if(!judgeok(v))continue;
            if(g[v.x][v.y]=='B'||g[v.x][v.y]=='Y'||g[v.x][v.y]=='R'||g[v.x][v.y]=='G'){
                if(!(u.key&judged(g[v.x][v.y]))) continue;
            }
            vis[v.x][v.y][v.key]=1;
            q.push(v);
        }
    }
    printf("The poor student is trapped!\n");
}



int main(){

    while(scanf("%d%d",&n,&m)&&n+m){
        for(int i=1;i<=n;i++)scanf("%s",g[i]+1);
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                if(g[i][j]=='*'){sx=i;sy=j;g[sx][sy]='.';break;break;}
            }
        }
        solve();
    }
    return 0;

}


### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是最优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的最大收益或者最小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论最短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问题了[^4]。 最后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值