RAG流程介绍

什么是RAG

RAG(检索增强生成)是一种将语言模型与可搜索知识库结合的方法,主要包含以下关键步骤:

  1. 数据预处理

    • 加载:从不同格式(PDF、Markdown等)中提取文本
    • 分块:将长文本分割成短序列(通常100-500个标记),作为检索单元
      在这里插入图片描述
  2. 检索系统构建

    • embedding:使用embedding模型为每个文本块生成向量表示
    • 存储:将这些向量索引到向量数据库中
    • 可选-重排:结合关键词搜索构建混合搜索系统,并添加重排序步骤
      在这里插入图片描述
  3. 查询处理流程

    • 接收用户查询并评估其相关性
    • 对查询进行嵌入,在向量库中查找相关块
      在这里插入图片描述
  4. 生成输出

    • 将检索到的相关内容与原始查询一起传递给LLM
    • LLM根据这些上下文信息生成更准确、更符合事实的回答
      在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非常大模型

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值