使用OpenAI ChatGPT-4o创建Web开发机器人

目录

介绍

背景

使用代码

兴趣点


介绍

本文旨在展示如何使用系统提示符和ChatGPT-4o模型创建一个以可视化方式生成网页的开发机器人。

背景

Claude3.5十四行诗的推出展示了一种创建应用程序和网页的新方法,使用所谓的“artifacts”,即对生成代码的内联解释。此功能可以通过使用OpenAIchatGPT3.5ChatGPT-4o模型的聊天机器人以简单直接的方式复制,只需使用动态iframing通过JavaScriptblob中捕获生成的代码即可。

使用代码

机器人的HTML界面应该很简单,主要由一个提示输入区域、一个API密钥的输入字段和一个空的div组成,其中将附加所有消息(访客和聊天机器人)。

<main>
<h1>OpenAI Web Dev Bot</h1>
      <div class="userinput">
         <input type="password" id="apikey" placeholder="Your API key"><br>
        <textarea rows=6 type="text" id="prompt" placeholder="Your prompt" autocomplete="off" autofocus></textarea><br>
        <button class="btncopy" onclick="sendMessage()">Send</button>
      </div>
      <section id="content">
        <div id="chathistory">
        </div>
      </section>
</main>

有三个主要功能需要实现:

  • sendMessage()
  • showMessage()
  • getChatGPTResponse()

sendMessage()函数旨在收集所有相关的输入,即promptAPI key,并将它们发送到后续函数:

// function to send the message
async function sendMessage() {
    const apikey = document.getElementById("apikey").value;
    console.log(apikey); // for debug purpose

    if (apikey === "") {
        alert("No OpenAI API Key found.");
    } else {
        console.log(apikey);
    }
    const inputElement = document.getElementById("prompt");
    const userInput = inputElement.value.trim();
    if (userInput !== "") {
        showMessage("Guest", userInput, "");
        chatMemory = await getChatGPTResponse(userInput, chatMemory);

        inputElement.value = "";
    }
}

该函数正在使用内存数组来保存前面的创建步骤,以及系统提示符。

这个内存阵列可以很容易地处理:

// Creation of the memory array with system prompt
let chatMemory = [];
chatMemory = createMemory([{
    role: "system",
    content: "You are a web developer bot. You don't talk, you don't explain your answers. Your only output is made of code to satisfy the received request. You will not explain the code, you will not introduce it, you will not greet or thank the user for the request, you will only produce a well structured code line by line without interruptions and without dividing it in sections."
}]);

// Definition of structure for context memory
function createMemory(messages) {
    const memory = [];
    for (const msg of messages) {
        memory.push({
            role: msg.role,
            content: msg.content
        });
    }
    return memory;
}

showMessage()函数稍微复杂一些,因为它处理机器人发送到模型的请求和从模型收到的响应。在这个函数中,我们在显示的答案中实现了各种配置,答案的主要部分由一个动态iFrame组成,其内容是通过blob创建的。

为了清晰起见和出于教学目的,在此实施中,我们还根据最新的OpenAI费率添加了代币和成本的管理。

// Show the message in the chat container
function showMessage(sender, message, tokens, downloadLink) {
    const chatContainer = document.getElementById("chathistory");
    const typingIndicator = document.getElementById("typing-indicator");

    if (typingIndicator && sender === "Chatbot") {
        chatContainer.removeChild(typingIndicator);
    }

    // Create a new message element
    const messageElement = document.createElement("div");

    // manage Guest and Chatbot messages differently
    if (sender === "Guest") {
        messageElement.innerHTML = `+[${hour}:${minute}] - ${sender}: ${message}`;
        messageElement.classList.add("user-message");
    } else {
        // Show chatbot message and token messages
        const timestampElement = document.createElement("p");
        timestampElement.innerHTML = `-[${hour}:${minute}] - ${sender}: `;
        timestampElement.classList.add("chatgpt-message");

        // Add a timestamp
        messageElement.appendChild(timestampElement);

        // Create an iFrame to trap the code generated in the response
        const iframe = document.createElement("iframe");
        iframe.style.width = "100%";
        iframe.style.height = "600px";
        iframe.style.border = "1px solid black";

        messageElement.appendChild(iframe);

        // Crea te a Blob to trap the generated code
        const blob = new Blob([`
        <!DOCTYPE html>
        <html lang="en">
        <head>
        <meta charset="UTF-8">
        <meta name="viewport" content="width=device-width, initial-scale=1.0">
        <title>Generated Code</title>
        </head>
        <body>
        ${message}
        </body>
        </html>
            type: 'text/html'
        });

        // Create a fictitious URL for the Blob
        const url = URL.createObjectURL(blob);

        // Set the iFrame to the Blob URL
        iframe.src = url;

        // Show the chatbot answer and token message
        const separator = document.createElement("p");
        separator.innerHTML = `${tokens}`;
        //messageElement.innerHTML += `-[${hour}:${minute}] - ${sender}: `;
        messageElement.classList.add("chatgpt-message");
        messageElement.appendChild(separator);

        // Add a link to download the generated code
        const downloadElem = document.createElement("div");
        downloadElem.innerHTML = downloadLink;
        messageElement.appendChild(downloadElem);
    }

    // Append the message to the chat container
    chatContainer.appendChild(messageElement);
    chatContainer.scrollTop = chatContainer.scrollHeight;
}

getChatGPTResponse()函数起着核心作用:它询问OpenAI模型,收集JSON对象作为响应,并将其字符串化以提取文本内容。添加了一组正则表达式来清理响应。我们还计算令牌以及请求和响应的成本,并创建链接以下载生成的代码。

// Function to interrogate OpenAI model and get response 
async function getChatGPTResponse(userInput, chatMemory = []) {
    const apikey = document.getElementById("apikey").value;
    if (apikey === "") {
        alert("No OpenAI API Key found.");
    } else {

    }
    const chatContainer = document.getElementById("chathistory");
    const typingIndicator = document.createElement("p");
    typingIndicator.id = "typing-indicator";
    typingIndicator.innerHTML =
        '<img src="preloader.gif" class="preloader" alt="Loading...">'; // place a gif in your folder
    chatContainer.appendChild(typingIndicator);

    try {
        const response = await fetch("https://api.openai.com/v1/chat/completions", {
            method: "POST",
            headers: {
                "Content-Type": "application/json",

                Authorization: "Bearer " + apikey
            },
            body: JSON.stringify({
                // Chose your model here by uncommenting the relevant line. 4o is default
                //model: "gpt-3.5-turbo-0125",
                model: "gpt-4o-mini",
                messages: [...chatMemory, {
                    role: "user",
                    content: userInput
                }]
            })
        });
        if (!response.ok) {
            throw new Error("Error while requesting to the API");
        }
        const data = await response.json();
        if (
            !data.choices ||
            !data.choices.length ||
            !data.choices[0].message ||
            !data.choices[0].message.content
        ) {
            throw new Error("Invalid API response");
        }

        const chatGPTResponse = data.choices[0].message.content.trim();

        var cleanResponse = chatGPTResponse.replace(
            /(||||||.net|||)(.*?)/gs,
            "$2"
        );
        console.log(chatGPTResponse); // for debug purpose only
        // Sanitize the response
        cleanResponse = cleanResponse.replace( //g, "");
            cleanResponse = cleanResponse.replace(/\*\*(.*?)\*\*/g, "$1");

            // manages tokens from the response
            const tokenCount = document.createElement("p");

            // Check if "completion_tokens" is present in the structure of objects returned by your API
            if (data.usage.completion_tokens) {
                const requestTokens = data.usage.prompt_tokens;
                const responseTokens = data.usage.completion_tokens;
                const totalTokens = data.usage.total_tokens;
                const pricepertokenprompt = 0.15 / 1000000; // uses gpt-4o-mini price of 0.15/Mt USD
                const pricepertokenresponse = 0.60 / 1000000; // uses gpt-4o-mini price of 0.15/Mt USD
                const priceperrequest = pricepertokenprompt * requestTokens;
                const priceperresponse = pricepertokenresponse * responseTokens;
                const totalExpense = priceperrequest + priceperresponse;
                tokenCount.innerHTML = `<hr>Your request used ${requestTokens} tokens and costed ${priceperrequest.toFixed(6)} USD<br>This response used ${responseTokens} tokens and costed ${priceperresponse.toFixed(6)} USD<br>Total Tokens: ${totalTokens}. This interaction costed you: ${totalExpense.toFixed(6)} USD.`;
            } else {
                tokenCount.innerHTML = "Unable to track the number of used tokens.";
            }

            // Create a blob and a link to download the code
            const blob = new Blob([cleanResponse], {
                type: 'text/html'
            });
            const url = URL.createObjectURL(blob);
            const downloadLink = `<a href="${url}" download="generated_code.html">Click here to download the generated HTML code</a>`;

            // Show the message with the final download link now created
            showMessage("Chatbot", cleanResponse, tokenCount.innerHTML, downloadLink);

            // adds response to memory context
            chatMemory.push({
                role: "user",
                content: userInput
            }); chatMemory.push({
                role: "assistant",
                content: cleanResponse
            });

            // updates context memory
            return chatMemory;
        }
        catch (error) {
            console.error(error);
            // manage errors with a warning
            alert(
                "An error occurred during the request. Check your OpenAI account or retry later."
            );
        }
    }

兴趣点

此代码中的主要兴趣点是:

  • 编写结构化和务实的系统提示,以取代OpenAI模型高度冗长和描述性的自然趋势
  • 实现动态iFrame结构并将代码blob指向该结构,以便将生成的HTML和CSS与容器网页隔离开来,从而避免容器网页的滥用式重新设置
  • 此版本使用本地输入字段来捕获API Key。在更安全的版本中,API密钥可以通过面板设置存储在localstorage上:

<input type="text" id="openaikeyInput" placeholder="Enter OpenAI key"><br>
<p id="modalfeedback"></p>
<button id="saveKeys">Save Key</button>
                            
<script>
function checkLocalStorageKeys() {
    if(localStorage.getItem('openaikey')) {
        var openaiKey = localStorage.getItem('openaikey');
        document.getElementById('openaikeyInput').value = openaiKey;
    } else {
        document.getElementById('modalfeedback').innerText = "Configura le API key";
    }
}

checkLocalStorageKeys();
</script>

然后 API 密钥可以通过修改const定义由sendMessage()getChatGPTResponse()函数中的localstorage检索:

const apikey = localStorage.getItem("openaikey");
document.getElementById("apikey").value = apikey;

https://www.codeproject.com/Tips/5386976/Creating-a-Web-Development-Bot-with-OpenAI-ChatGPT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值