python学习笔记---面向对象编程【廖雪峰】

面向对象编程(OOP)是一种程序设计思想,以对象为中心,包含数据和操作数据的方法。文章介绍了类与实例的概念,包括__init__方法用于初始化对象属性,以及数据封装和访问限制,如私有变量的使用。还讨论了继承和多态性,展示了如何通过继承实现代码复用和子类覆盖父类方法。此外,提到了isinstance()函数用于判断对象类型,以及dir()函数获取对象属性和方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

面向对象编程

面向对象编程——Object Oriented Programming,简称OOP,是一种程序设计思想。OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数

面向过程 VS 面向对象

●面向过程的程序设计把计算机程序视为一系列的命令集合,即一组函数的顺序执行。为了简化程序设计,面向过程把函数继续切分为子函数,即把大块函数通过切割成小块函数来降低系统的复杂度。

●而面向对象的程序设计把计算机程序视为一组对象的集合,而每个对象都可以接收其他对象发过来的消息,并处理这些消息,计算机程序的执行就是一系列消息在各个对象之间传递

class Student(object):

    def __init__(self, name, score):
        self.name = name
        self.score = score

    def print_score(self):
        print('%s: %s' % (self.name, self.score))   
# 给对象发消息[对象的方法(Method)]
bart = Student('Bart Simpson', 59)
lisa = Student('Lisa Simpson', 87)
bart.print_score()
lisa.print_score()

类和实例

类中定义的函数

①可以在创建实例的时候,把一些我们认为必须绑定的属性强制填写进去。通过定义一个特殊的__init__方法,在创建实例的时候,就把namescore等属性绑上去:

class Student(object):

    def __init__(self, name, score):
        self.name = name
        self.score = score

__init__方法的第一个参数永远是self,表示创建的实例本身,因此,在__init__方法内部,就可以把各种属性绑定到self,因为self就指向创建的实例本身。

②和普通的函数相比,在类中定义的函数只有一点不同,就是第一个参数永远是实例变量self,并且,调用时,不用传递该参数。除此之外,类的方法和普通函数没有什么区别,所以,你仍然可以用默认参数、可变参数、关键字参数和命名关键字参数

数据封装

面向对象编程的三大特征之一。本质就是对象内部数据的操作细节对外不暴露,实例只需要进行传参就可以实现对对象的属性进行相关的操作,无需知道方法内部的实现细节。

访问限制

NO1

# 外部代码还是可以自由地修改一个实例的name、score属性:
>>> bart = Student('Bart Simpson', 59)
>>> bart.score
59
>>> bart.score = 99
>>> bart.score
99

NO2

**让内部属性不被外部访问,可以把属性的名称前加上两个下划线__,**在Python中,实例的变量名如果以__开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问,所以,我们把Student类改一改:

class Student(object):

    def __init__(self, name, score):
        self.__name = name
        self.__score = score

    def print_score(self):
        print('%s: %s' % (self.__name, self.__score))

改完后,对于外部代码来说,没什么变动,但是已经无法从外部访问实例变量.__name实例变量.__score了:

>>> bart = Student('Bart Simpson', 59)
>>> bart.__name
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute '__name'

这样就确保了外部代码不能随意修改对象内部的状态,这样通过访问限制的保护,代码更加健壮。

NO3

如果外部代码要获取name和score怎么办?可以给Student类增加get_nameget_score这样的方法:

class Student(object):
    ...

    def get_name(self):
        return self.__name

    def get_score(self):
        return self.__score

NO4

允许外部代码修改score怎么办?可以再给Student类增加set_score方法:

class Student(object):
    ...

    def set_score(self, score):
        self.__score = score

你也许会问,原先那种直接通过bart.score = 99也可以修改啊,为什么要定义一个方法大费周折?因为在方法中,可以对参数做检查,避免传入无效的参数

class Student(object):
 ...

 def set_score(self, score):
     if 0 <= score <= 100:
         self.__score = score
     else:
         raise ValueError('bad score')

约定俗成

①在Python中,变量名类似__xxx__,也就是以双下划线开头,并且以双下划线结尾的,是特殊变量,特殊变量是可以直接访问的,不是private变量,所以,不能用__name____score__这样的变量名。

②你会看到以一个下划线开头的实例变量名,比如_name,这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”


双下划线开头的实例变量也可以从外部访问

不能直接访问__name是因为Python解释器对外把__name变量改成了_Student__name[不同版本的Python解释器可能会把__name改成不同的变量名],所以,仍然可以通过_Student__name来访问__name变量:

>>> bart._Student__name
'Bart Simpson'

最后注意下面的这种错误写法

>>> bart = Student('Bart Simpson', 59)
>>> bart.get_name()
'Bart Simpson'
>>> bart.__name = 'New Name' # 设置__name变量!
>>> bart.__name
'New Name'

表面上看,外部代码“成功”地设置了__name变量,但实际上这个__name变量和class内部的__name变量不是一个变量!内部的__name变量已经被Python解释器自动改成了_Student__name,而外部代码给bart新增了一个__name变量。不信试试:

>>> bart.get_name() # get_name()内部返回self.__name
'Bart Simpson'

继承和多态

在OOP程序设计中,当我们定义一个class的时候,可以从某个现有的class继承,新的class称为子类(Subclass),而被继承的class称为基类、父类或超类(Base class、Super class)。

继承可以把父类的所有功能都直接拿过来,这样就不必重零做起【继承】;子类只需要新增自己特有的方法,也可以把父类不适合的方法覆盖重写【多态】。

class Animal(object):
    def run(self):
        print('Animal is running...')

class Dog(Animal):  # 由于Animial实现了run()方法,因此,Dog作为它的子类,什么事也没干,就自动拥有了父类的run()方法:
    pass

class Cat(Animal):
    def run(self):  # 多态:实例对象调用run(),实际上调用的是自己的
        print('Cat is running...')

def run_twice(animal):
    animal.run()
    animal.run()

class Timer(object):
    def run(self):
        print('Start...')

run_twice(Dog())   # 由于Animial实现了run()方法,因此,Dog作为它的子类,什么事也没干,就自动拥有了父类的run()方法
run_twice(Cat())   # 多态:实例对象调用run(),实际上调用的是自己的【子类的run()覆盖了父类的run()】
run_twice(Timer())   # 体现了“鸭子类型”,即为只要传进去的是一个对象,并且该对象有run(),就可以体现出run()的特性

获取对象信息

当我们拿到一个对象的引用时,如何知道这个对象是什么类型、有哪些方法呢?

使用type()

基本类型都可以用type()判断:

>>> type(123)
<class 'int'>
>>> type('str')
<class 'str'>
>>> type(None)
<type(None) 'NoneType'>

如果一个变量指向函数或者类,也可以用type()判断:

>>> type(abs)
<class 'builtin_function_or_method'>
>>> type(a)
<class '__main__.Animal'>

①判断基本数据类型可以直接写intstr

>>> type(123)==type(456)
True
>>> type(123)==int
True
>>> type('abc')==type('123')
True
>>> type('abc')==str
True
>>> type('abc')==type(123)
False

②判断一个对象是否是函数怎么办?可以使用types模块中定义的常量

>>> import types
>>> def fn():
...     pass
...
>>> type(fn)==types.FunctionType
True
>>> type(abs)==types.BuiltinFunctionType
True
>>> type(lambda x: x)==types.LambdaType
True
>>> type((x for x in range(10)))==types.GeneratorType
True

使用isinstance()

对于class的继承关系来说,使用type()就很不方便。我们要判断class的类型,可以使用isinstance()函数。

涉及到一个向上继承,向下多态


继承关系是:

object -> Animal -> Dog -> Husky
>>> a = Animal()
>>> d = Dog()
>>> h = Husky()
>>> isinstance(h, Husky)
True
>>> isinstance(h, Dog)
True
>>> isinstance(h, Animal)
True
>>> isinstance(d, Husky)
False

并且还可以判断一个变量是否是某些类型中的一种,比如下面的代码就可以判断是否是list或者tuple:

>>> isinstance([1, 2, 3], (list, tuple))
True
>>> isinstance((1, 2, 3), (list, tuple))
True

总是优先使用isinstance()判断类型,可以将指定类型及其子类“一网打尽”。

使用dir()

如果要**获得一个对象的所有属性和方法,可以使用dir()函数,它返回一个包含字符串的list**,比如,获得一个str对象的所有属性和方法:

>>> dir('ABC')
['__add__', '__class__',..., '__subclasshook__', 'capitalize', 'casefold',..., 'zfill']

类似__xxx__的属性和方法在Python中都是有特殊用途的,比如__len__方法返回长度。在Python中,如果你调用len()函数试图获取一个对象的长度,实际上,在len()函数内部,它自动去调用该对象的__len__()方法,所以,下面的代码是等价的:

>>> len('ABC')
3
>>> 'ABC'.__len__()
3

所以我们是可以对这些内置函数进行改写的


通过内置的一系列getattr()setattr()以及hasattr()函数,我们可以对任意一个Python对象进行剖析,拿到其内部的数据,直接操作一个对象的状态。

>>> class MyObject(object):
...     def __init__(self):
...         self.x = 9
...     def power(self):
...         return self.x * self.x
...
>>> obj = MyObject()
>>> hasattr(obj, 'x') # 有属性'x'吗?
True
>>> obj.x
9
>>> hasattr(obj, 'y') # 有属性'y'吗?
False
>>> setattr(obj, 'y', 19) # 设置一个属性'y'
>>> hasattr(obj, 'y') # 有属性'y'吗?
True
>>> getattr(obj, 'y') # 获取属性'y'
19
>>> obj.y # 获取属性'y'
19
>>> getattr(obj, 'z', 404) # 获取属性'z',如果不存在,返回默认值404
404

>>> hasattr(obj, 'power') # 有属性'power'吗?
True
>>> getattr(obj, 'power') # 获取属性'power'
<bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>>
>>> fn = getattr(obj, 'power') # 获取属性'power'并赋值到变量fn
>>> fn # fn指向obj.power
<bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>>
>>> fn() # 调用fn()与调用obj.power()是一样的
81

实际用途
def readImage(fp):
    if hasattr(fp, 'read'):
        return readData(fp)
    return None

假设我们希望从文件流fp中读取图像,我们首先要判断该fp对象是否存在read方法,如果存在,则该对象是一个流,如果不存在,则无法读取。hasattr()就派上了用场。

请注意,在Python这类动态语言中,根据鸭子类型,有read()方法,不代表该fp对象就是一个文件流,它也可能是网络流,也可能是内存中的一个字节流,但只要read()方法返回的是有效的图像数据,就不影响读取图像的功能

实例属性和类属性

在编写程序的时候,千万不要对实例属性和类属性使用相同的名字,因为相同名称的实例属性将屏蔽掉类属性【实例属性优先级比类属性高】,但是当你删除实例属性后,再使用相同的名称,访问到的将是类属性。

①给实例绑定属性的方法是通过实例变量,或者通过self变量:

class Student(object):
    def __init__(self, name):
        self.name = name

s = Student('Bob')
s.score = 90

直接在class中定义属性,这种属性是类属性,归Student类所有:

class Student(object):
    name = 'Student'

当我们定义了一个类属性后,这个属性虽然归类所有,但类的所有实例都可以访问到。来测试一下:

>>> class Student(object):
...     name = 'Student'
...
>>> s = Student() # 创建实例s
>>> print(s.name) # 打印name属性,因为实例并没有name属性,所以会继续查找class的name属性
Student
>>> print(Student.name) # 打印类的name属性
Student
>>> s.name = 'Michael' # 给实例绑定name属性
>>> print(s.name) # 由于实例属性优先级比类属性高,因此,它会屏蔽掉类的name属性
Michael
>>> print(Student.name) # 但是类属性并未消失,用Student.name仍然可以访问
Student
>>> del s.name # 如果删除实例的name属性
>>> print(s.name) # 再次调用s.name,由于实例的name属性没有找到,类的name属性就显示出来了
Student
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值