Coursera Machine Learning 第四周 quiz Neural Networks: Representation

本文探讨了多类分类问题中神经网络的应用,包括激活函数的特性、过拟合解决方案及正则化参数调整等内容,并介绍了如何计算隐藏层激活值等关键技术细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Which of the following statements are true? Check all that apply.

答案CD

Suppose you have a multi-class classification problem with three classes, trained with a 3 layer network. Let a(3)1=(hΘ(x))1 be the activation of the first output unit, and similarly a(3)2=(hΘ(x))2 and a(3)3=(hΘ(x))3. Then for any input x, it must be the case that a(3)1+a(3)2+a(3)3=1.

If a neural network is overfitting the data, one solution would be to decrease the regularization parameter λ.

In a neural network with many layers, we think of each successive layer as being able to use the earlier layers as features, so as to be able to compute increasingly complex functions.

If a neural network is overfitting the data, one solution would be to increase the regularization parameter λ.

答案A

OR

AND

NAND (meaning "NOT AND")

XOR (exclusive OR)

3.Consider the neural network given below. Which of the following equations correctly computes the activation a(3)1? Note: g(z) is the sigmoid activation function.

答案A

a(3)1=g(Θ(2)1,0a(2)0+Θ(2)1,1a(2)1+Θ(2)1,2a(2)2)

a(3)1=g(Θ(2)1,0a(1)0+Θ(2)1,1a(1)1+Θ(2)1,2a(1)2)

a(3)1=g(Θ(1)1,0a(2)0+Θ(1)1,1a(2)1+Θ(1)1,2a(2)2)

a(3)1=g(Θ(2)2,0a(2)0+Θ(2)2,1a(2)1+Θ(2)2,2a(2)2)

4.

You have the following neural network:

You'd like to compute the activations of the hidden layer a(2)R3. One way to do so is the following Octave code:

You want to have a vectorized implementation of this (i.e., one that does not use for loops). Which of the following implementations correctly compute a(2)? Check all that apply.

答案A

a2 = sigmoid (Theta1 * x);

a2 = sigmoid (x * Theta1);

a2 = sigmoid (Theta2 * x);

z = sigmoid(x); a2 = Theta1 * z;


You are using the neural network pictured below and have learned the parameters Θ(1)=[111.55.13.72.3] (used to compute a(2)) and Θ(2)=[10.60.8] (used to compute a(3)} as a function of a(2)). Suppose you swap the parameters for the first hidden layer between its two units so Θ(1)=[115.11.52.33.7] and also swap the output layer so Θ(2)=[10.80.6]. How will this change the value of the output hΘ(x)?

答案A

It will stay the same.

It will increase.

It will decrease

Insufficient information to tell: it may increase or decrease.


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值