Coursera Machine Learning Week 4 - Neural Networks

这篇博客探讨了神经网络的表示,包括多层网络的特征计算、过拟合解决方案、逻辑功能的实现、激活函数的计算,以及参数交换对输出的影响。同时提到了在Coursera上的机器学习课程中关于神经网络的编程作业,涉及到多类别分类和神经网络的相关函数实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Neural Networks: Representation

1. Which of the following statements are true? Check all that apply.

  • (OK) In a neural network with many layers, we think of each successive layer as being able to use the earlier layers as features, so as to be able to compute increasingly complex functions.
  • (OK) If a neural network is overfitting the data, one solution would be to increase the regularization parameter λ.
  • If a neural network is overfitting the data, one solution would be to decrease the regularization parameter λ.
  • Suppose you have a multi-class classification problem with three classes, trained with a 3 layer network. Let a(3)1=(hΘ(x))1 be the activation of the first output unit, and similarly a(3)2=(hΘ(x))2 and a(3)3=(hΘ(x))3. Then for any input x, it must be the case that a(3)1+a(3)2+a(3)3=1.

2. Consider the following neural network which takes two binary-valued inputs x1,x2∈{0,1} and outputs hΘ(x). Which of the following logical functions does it (approximately) compute?

+1     -20
x1      30     ()     hΘ(x)
x2      30
  • (OK) OR
  • AND
  • NAND (meaning “NOT AND”)
  • XOR (e
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值