Control-模型预测控制(Model Predict Control,MPC)

本文详细介绍了模型预测控制(MPC)的原理,包括状态空间模型的离散化、预测模型的建立、代价函数的设定、约束条件处理以及Matlab中的求解过程。通过对系统的状态和控制量进行预测,MPC优化了未来输出并考虑了约束,以实现对系统的高效控制。
该文章已生成可运行项目,

模型预测控制(Model Predict Control)利用一个已有的模型、系统当前的状态和未来的控制量去预测系统未来的输出;这个输出的长度是控制周期的整数倍;由于未来的控制量是未知的,需要根据一定的条件进行求解,以得到未来的控制量序列,并在每个控制周期结束后,系统根据当前实际状态重新预测系统未来的输出。因此模型预测控制有三个关键步骤,分别是:预测模型、滚动优化和反馈校正。

  • 预测模型:预测模型是控制的基础,根据对象的历史信息和未来输入,预测系统未来的输出。预测模型有:状态空间方程、传递函数、阶跃响应、脉冲响应、神经网络模型等等。

  • 滚动优化:模型预测控制通过控制某一性能指标的最优来确定控制序列,但优化不是一次离线进行,而是反复在线进行的。

  • 反馈校正:为了防止模型失配或者干扰等引起控制对理想状态的偏差,在新的采样时刻,首先检测对象的实际输出,并利用这一实时信息对基于模型的预测结果进行修正,然后再进行新的优化。

在此,选择状态空间方程作为预测模型。

1 状态空间方程

状态空间方程为:
{x˙=Ax+Bu+Ddisy=Cx+Du(1) \begin{cases} \dot{x} = A x + B u + D_{dis} \\ y = C x + D u \end{cases} \tag{1} {x˙=Ax+Bu+Ddisy=Cx+Du(1)
连续状态空间方程需要离散化,常用的离散化方法有:欧拉公式离散化,后向差分和双线性变换离散化

MatrixEulerBackward RectBilinear Transform
AdA_dAdI+A∗ΔtI + A*\Delta tI+AΔt(I−A∗Δt)−1(I - A*\Delta t)^{-1}(IAΔt)1(I−A∗Δt2)−1(I+A∗Δt2)(I - \frac{A*\Delta t}{2})^{-1} (I + \frac{A*\Delta t}{2})(I2AΔt)1(I+2AΔt)
BdB_dBdB∗ΔtB* \Delta tBΔt(I−A∗Δt)−1B∗Δt(I - A*\Delta t)^{-1} B * \Delta t(IAΔt)1BΔt(I−A∗Δt2)−1B∗Δt(I - \frac{A*\Delta t}{2})^{-1} B * \Delta t(I2AΔt)1BΔt
Dd,disD_{d,dis}Dd,disDdis∗ΔtD_{dis} * \Delta tDdisΔt(I−A∗Δt)−1Ddis∗Δt(I - A*\Delta t)^{-1} D_{dis} * \Delta t(IAΔt)1DdisΔt(I−A∗Δt2)−1Ddis∗Δt(I - \frac{A*\Delta t}{2})^{-1} D_{dis} * \Delta t(I2AΔt)1DdisΔt
CdC_dCdCCCC(I−A∗Δt)−1C (I - A*\Delta t)^{-1}C(IAΔt)1C(I−A∗Δt2)−1C (I - \frac{A*\Delta t}{2})^{-1}C(I2AΔt)1
DdD_dDdDDDD+C(I−A∗Δt)−1B∗ΔtD + C (I - A*\Delta t)^{-1} B * \Delta tD+C(IAΔt)1BΔtD+C(I−A∗Δt2)−1B∗Δt2D + C (I - \frac{A*\Delta t}{2})^{-1} \frac{B * \Delta t}{2}D+C(I2AΔt)12BΔt

离散的状态空间方程为:
{xk+1=Adxk+Bduk+Dd,disyk=Cdxk+Dduk(2) \begin{cases} x_{k+1} = A_d x_k + B_d u_k + D_{d,{dis}} \\ y_k = C_d x_k + D_d u_k \end{cases} \tag{2} {xk+1=Adxk+Bduk+Dd,disyk=Cdxk+Dduk(2)

2 预测模型

根据经验模型(状态空间方程)和当前状态、未来控制量,可以预测未来的输出量。
{xk+1=Adxk+Bduk+Dd,disxk+2=Adxk+1+Bduk+1+Dd,dis=Ad(Adxk+Bduk+Dd,dis)+Bduk+1+Dd,dis=Ad2xk+(AdBduk+Bduk+1)+AdDd,dis+Dd,disxk+3=Adxk+2+Bduk+2+Dd,dis=Ad2xk+1+(AdBduk+1+Bduk+2)+AdDd,dis+Dd,dis=Ad3xk+(Ad2Bduk+AdBduk+1+Bduk+2)+Ad2Dd,dis+AdDd,dis+Dd,dis⋮xk+Np=AdNpxk+(AdNp−1Bduk+⋯+AdNp−Nc+1Bduk+1+AdNp−NcBduk+Nc−1)+(AdNp−1Dd,dis+⋯+AdDd,dis+Dd,dis)(3) \begin{cases} x_{k+1} &= A_d x_k + B_d u_k + D_{d,{dis}} \\ x_{k+2} &= A_d x_{k+1} + B_d u_{k+1} + D_{d,{dis}} \\ &= A_d(A_d x_k + B_d u_k + D_{d,{dis}}) + B_d u_{k+1} + D_{d,{dis}} \\ &= A^2_{d} x_k + (A_d B_d u_k + B_d u_{k+1}) + A_d D_{d,{dis}} + D_{d,{dis}} \\ x_{k+3} &= A_d x_{k+2} + B_d u_{k+2} + D_{d,{dis}} \\ &= A^2_{d} x_{k+1} + (A_dB_du_{k+1} + B_d u_{k+2}) + A_dD_{d,{dis}} + D_{d,{dis}} \\ &= A^3_d x_k + (A^2_dB_du_{k} + A_dB_du_{k+1} + B_d u_{k+2}) + A^2_d D_{d,{dis}} + A_dD_{d,{dis}} + D_{d,{dis}} \\ \vdots \\ x_{k+N_p} &= A^{N_p}_d x_{k} + (A^{N_p -1}_dB_du_{k} + \cdots + A^{N_p-N_c+1}_dB_du_{k+1} + A^{N_p-N_c}_d B_d u_{k+N_c-1}) \\ &+(A^{N_p -1}_d D_{d,{dis}} + \cdots + A_d D_{d,{dis}} + D_{d,{dis}}) \end{cases} \tag{3} xk+1xk+2xk+3xk+Np=Adxk+Bduk+Dd,dis=Adxk+1+Bduk+1+Dd,dis=Ad(Adxk+Bduk+Dd,dis)+Bduk+1+Dd,dis=Ad2xk+(AdBduk+Bduk+1)+AdDd,dis+Dd,dis=Adxk+2+Bduk+2+Dd,dis=Ad2xk+1+(AdBduk+1+Bduk+2)+AdDd,dis+Dd,dis=Ad3xk+(Ad2Bduk+AdBduk+1+Bduk+2)+Ad2Dd,dis+AdDd,dis+Dd,dis=AdNpxk+(AdNp1Bduk++AdNpNc+1Bduk+1+AdNpNcBduk+Nc1)+(AdNp1Dd,dis++AdDd,dis+Dd,dis)(3)
其中,NpN_pNp是预测时域,NcN_cNc是控制时域,并且Np≥NcN_p \geq N_cNpNc,在Nc<k≤NpNc < k \leq N_pNc<kNp时域内,uk=0u_k = 0uk=0

将公式(3)整理可得:
X=FX0+ΦU+E(4) X = F X_{0} + \Phi U + E \tag{4} X=FX0+ΦU+E(4)
其中:
{X=[xk+1,xk+2,⋯ ,xk+NP]T;X0=xk;U=[uk,uk+2,⋯ ,uk+Nc−1]T;F=[Ad,Ad2,⋯ ,AdNp]T;Φ=[Bd0⋯0AdBdBd⋯0⋮⋮⋱⋮ANp−1dBdANp−2dBd⋯AdNp−NcBd]E=[Dd,dis,AdDd,dis+Dd,dis,⋯ ,∑i=0Np−1AkiDd,dis]T(5) \begin{cases} X = [x_{k+1},x_{k+2},\cdots,x_{k+N_P}]^T; \\ X_0 = x_k; \\ U = [u_{k},u_{k+2},\cdots,u_{k+N_c-1}]^T; \\ F = [A_d, A^{2}_d,\cdots, A^{N_p}_d]^T; \\ \Phi = \left[\begin{matrix} B_d &0 & \cdots & 0 \\ A_d B_d & B_d & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A^{N_p -1}d B_d & A^{N_p -2}d B_d & \cdots & A^{N_p-N_c}_d B_d \\ \end{matrix} \right] \\ E = [D_{d,dis}, A_d D_{d,dis} + D_{d,dis},\cdots,\sum_{i=0}^{N_p-1}A^i_kD_{d,dis}]^T \\ \end{cases} \tag{5} X=[xk+1,xk+2,,xk+NP]T;X0=xk;U=[uk,uk+2,,uk+Nc1]T;F=[Ad,Ad2,,AdNp]T;Φ=BdAdBdANp1dBd0BdANp2dBd00AdNpNcBdE=[Dd,dis,AdDd,dis+Dd,dis,,i=0Np1AkiDd,dis]T(5)
假设Dd=0D_d=0Dd=0,由公(4)可以得到系统的预测输出量:
Y=CdFX0+CdΦU+CdE=FyX0+ΦyU+Ey=[yk+1,yk+2,⋯ ,yk+Np]T(6) Y = C_d FX_{0} + C_d \Phi U + C_d E = F_yX_0 +\Phi _{y} U + E_y = [y_{k+1},y_{k+2},\cdots,y_{k+N_p}]^T \tag{6} Y=CdFX0+CdΦU+CdE=FyX0+ΦyU+Ey=[yk+1,yk+2,,yk+Np]T(6)

3 代价函数

以系统的期望输出与预测输出的误差最小作为代价函数
J=(Y−Yref)TQe(Y−Yref)+UTReU=(FyX0+ΦyU+Ey−Yref)TQe(FyX0+ΦyU+Ey−Yref)+UTReU=UT(ΦyTQeΦy+Re)U+UT[2ΦyTQe(FyX0+Ey−Yref)]+(FyX0+Ey−Yref)TQe(FyX0+Ey−Yref)(7) \begin{aligned} J &= (Y - Y_{ref})^T Q_e (Y - Y_{ref}) + U^T R_e U \\ &= (F_yX_0 +\Phi _{y} U + E_y - Y_{ref})^T Q_e (F_yX_0 +\Phi _{y} U + E_y - Y_{ref}) + U^T R_e U \\ &= U^T(\Phi ^T_{y} Q_e \Phi _{y} + R_e)U + U^T[2\Phi ^T_{y} Q_e (F_y X_0 + E_y -Y_{ref})] + (F_y X_0 + E_y -Y_{ref})^T Q_e (F_y X_0 + E_y -Y_{ref}) \end{aligned} \tag{7} J=(YYref)TQe(YYref)+UTReU=(FyX0+ΦyU+EyYref)TQe(FyX0+ΦyU+EyYref)+UTReU=UT(ΦyTQeΦy+Re)U+UT[2ΦyTQe(FyX0+EyYref)]+(FyX0+EyYref)TQe(FyX0+EyYref)(7)
则代价函数可以简写为:
J=UTHU+2UTG+P(8) J = U^T H U + 2U^TG+P \tag{8} J=UTHU+2UTG+P(8)
其中,QQQ是状态权重矩阵,RRR是控制输入权重矩阵,PPP是常量,显然代价函数是一个QPQPQP问题的求解。
H=ΦyTQeΦy+Re;G=ΦyTQeM;P=MTQeM;M=FyX0+Ey−YrefQe=[Q0⋯00Q⋯0⋮⋮⋱⋮00⋯Q]Np×NpRe=[R0⋯00R⋯0⋮⋮⋱⋮00⋯R]Nc×Nc(9) \begin{array}{cc} H = \Phi ^T_{y} Q_e \Phi _{y} + R_e; \\ G = \Phi ^T_{y} Q_e M; \\ P =M^T Q_e M; \\ M = F_y X_0 + E_y -Y_{ref} \\ Q_e=\left[\begin{matrix} Q &0 &\cdots &0 \\ 0 &Q &\cdots &0 \\ \vdots &\vdots &\ddots &\vdots \\ 0 &0 &\cdots &Q \\ \end{matrix} \right]_{N_p \times N_p} \\ R_e=\left[\begin{matrix} R &0 &\cdots &0 \\ 0 &R &\cdots &0 \\ \vdots &\vdots &\ddots &\vdots \\ 0 &0 &\cdots &R \\ \end{matrix} \right]_{N_c \times N_c} \end{array} \tag{9} H=ΦyTQeΦy+Re;G=ΦyTQeM;P=MTQeM;M=FyX0+EyYrefQe=Q000Q000QNp×NpRe=R000R000RNc×Nc(9)

4 约束条件

假设只考虑控制变量的上下界约束,则矩阵UUU的约束为:
Umin≤U≤Umax(10) U_{min} \leq U \leq U_{max} \tag{10} UminUUmax(10)
或者写成以下形式:
[I−I]U≥[Umin−Umax](11) \left[ \begin{matrix} I \\ -I \end{matrix}\right]U \geq \left[ \begin{matrix} U_{min} \\ -U_{max} \end{matrix}\right] \tag{11} [II]U[UminUmax](11)

5 QPQPQP问题

由上可知,MPCMPCMPC问题的求解最终转化为QPQPQP问题的求解,对于QPQPQP问题工程上可以求解的,有多种方法及开源库可以进行求解。
min:    J=12UTHU+UTs.t.    Umin≤U≤Umax(12) \begin{matrix} min: \; \; J = \frac{1}{2}U^T H U + U^T \\ s.t.\; \; U_{min} \leq U \leq U_{max} \end{matrix} \tag{12} min:J=21UTHU+UTs.t.UminUUmax(12)

将求解的控制量系列的第一个值作为控制量。

6 增量约束问题

将状态空间方程(2)改写为增量模式,以Δu\Delta uΔu为控制量:
{ξk+1=Amξk+BmΔuk+Dm,disθk=Cmξk(13) \begin{cases} \xi_{k+1} = A_m \xi_k + B_m \Delta u_k + D_{m,{dis}} \\ \theta_k = C_m \xi_k \end{cases} \tag{13} {ξk+1=Amξk+BmΔuk+Dm,disθk=Cmξk(13)
其中:
ξ=[xk,uk]T;θk=[yk,uk]T;Am=[AdBd0I];Bm=[0I]T;Dm,dis=[Dd,dis0]T;Cm=[Cd00I];(14) \begin{array}{cc} {}\xi = [x_k,u_k]^T; \\ \theta _k = [y_k, u_k]^T; \\ A_m = \left[\begin{matrix} A_d &B_d \\ 0 &I \end{matrix}\right]; \\ B_m = \left[\begin{matrix} 0 &I \end{matrix}\right]^T; \\ D_{m,dis} = \left[\begin{matrix} D_{d,dis} &0 \end{matrix}\right]^T; \\ C_m = \left[\begin{matrix} C_d &0 \\ 0 &I \end{matrix}\right]; \\ \end{array} \tag{14} ξ=[xk,uk]T;θk=[yk,uk]T;Am=[Ad0BdI];Bm=[0I]T;Dm,dis=[Dd,dis0]T;Cm=[Cd00I];(14)
与上述相同的推到可以得到增量模型的QPQPQP形式:
min:    J=12ΔUTHΔU+ΔUTs.t.                    Umin≤U≤Umax                                        ΔUmin≤ΔU≤ΔUmax(15) \begin{matrix} min: \; \; J = \frac{1}{2} \Delta U^T H \Delta U + \Delta U^T \\ s.t.\; \; \; \; \; \; \; \; \; \; U_{min} \leq U \leq U_{max} \\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \Delta U_{min} \leq \Delta U \leq \Delta U_{max} \end{matrix} \tag{15} min:J=21ΔUTHΔU+ΔUTs.t.UminUUmaxΔUminΔUΔUmax(15)
其中,RmR_mRmΔU\Delta UΔU的权重矩阵:
Qe=[Q0⋯000⋯00Q⋯000⋯0⋮⋮⋱⋮⋮⋮⋱⋮00⋯Q00⋯000⋯0R0⋯000⋯00R⋯0⋮⋮⋱⋮⋮⋮⋱⋮00⋯000⋯R](Np+NC)×(Np+NC)Re=[Rm0⋯00Rm⋯0⋮⋮⋱⋮00⋯Rm]Nc×Nc(16) \begin{array}{cc} Q_e=\left[\begin{matrix} Q &0 &\cdots &0 &0 &0 &\cdots &0\\ 0 &Q &\cdots &0 &0 &0 &\cdots &0\\ \vdots &\vdots &\ddots &\vdots &\vdots &\vdots &\ddots &\vdots\\ 0 &0 &\cdots &Q &0 &0 &\cdots &0\\ 0 &0 &\cdots &0 &R &0 &\cdots &0\\ 0 &0 &\cdots &0 &0 &R &\cdots &0\\ \vdots &\vdots &\ddots &\vdots &\vdots &\vdots &\ddots &\vdots\\ 0 &0 &\cdots &0 &0 &0 &\cdots &R\\ \end{matrix} \right]_{(N_p + N_C) \times (N_p + N_C)} \\ R_e=\left[\begin{matrix} R_m &0 &\cdots &0 \\ 0 &R_m &\cdots &0 \\ \vdots &\vdots &\ddots &\vdots \\ 0 &0 &\cdots &R_m \\ \end{matrix} \right]_{N_c \times N_c} \end{array} \tag{16} Qe=Q000000Q000000Q000000R000000R000000R(Np+NC)×(Np+NC)Re=Rm000Rm000RmNc×Nc(16)

根据ΔU\Delta UΔU来求解UUU,使UUU满足其约束:
uk=uk−1+Δuk=uk−1+[1  0  ⋯  0]ΔUuk+1=uk+Δuk+1=uk−1+Δuk+Δuk+1=uk−1+[1  1  ⋯  0]ΔU⋮uNc=uNc−1+ΔuNc=uNc−2+ΔuNc−1+ΔuNc=uk−1+[1  1  ⋯  1]ΔU(17) \begin{array}{cc} u_{k} &= u_{k-1} + \Delta u_{k} &= u_{k-1} + [1\;0\;\cdots\;0] \Delta U \\ u_{k+1} &= u_{k} + \Delta u_{k+1} &= u_{k-1} + \Delta u_{k} + \Delta u_{k+1} &= u_{k-1} + [1\;1\;\cdots\;0] \Delta U \\ \vdots \\ u_{N_c} &= u_{N_c -1} + \Delta u_{N_c} &= u_{N_c -2} + \Delta u_{N_c - 1} + \Delta u_{N_c} &= u_{k-1} + [1\;1\;\cdots\;1] \Delta U \\ \end{array} \tag{17} ukuk+1uNc=uk1+Δuk=uk+Δuk+1=uNc1+ΔuNc=uk1+[100]ΔU=uk1+Δuk+Δuk+1=uNc2+ΔuNc1+ΔuNc=uk1+[110]ΔU=uk1+[111]ΔU(17)
即:
[ukuk+1uk+2⋮uk+Nc]=[III⋮I]uk−1+[I00⋯0II0⋯0III⋯0⋮⋮⋮⋱⋮III⋯I][ΔukΔuk+1Δuk+2⋮Δuk+Nc](18) \left[ \begin{matrix} u_k \\u_{k+1} \\u_{k+2} \\ \vdots \\u_{k+N_c} \end{matrix}\right] = \left[ \begin{matrix} I \\I \\I \\ \vdots \\I \end{matrix}\right]u_{k-1} + \left[ \begin{matrix} I &0 &0 & \cdots &0 \\ I &I &0 & \cdots &0 \\ I &I &I & \cdots &0 \\ \vdots & \vdots & \vdots & \ddots & \vdots\\ I &I &I & \cdots &I \end{matrix}\right] \left[ \begin{matrix} \Delta u_k \\ \Delta u_{k+1} \\ \Delta u_{k+2} \\ \vdots \\ \Delta u_{k+N_c} \end{matrix}\right] \tag{18} ukuk+1uk+2uk+Nc=IIIIuk1+IIII0III00II000IΔukΔuk+1Δuk+2Δuk+Nc(18)
简化可得:
[C1−C1]ΔU≥[Umin−C2uk−1−Umax+C2uk−1](19) \left[ \begin{matrix} C_1 \\ -C_1 \end{matrix}\right] \Delta U \geq \left[ \begin{matrix} U_{min} - C_2 u_{k-1} \\ -U_{max} + C_2 u_{k-1}\end{matrix}\right] \\ \tag{19} [C1C1]ΔU[UminC2uk1Umax+C2uk1](19)
其中:
C1=[I00⋯0II0⋯0III⋯0⋮⋮⋮⋱⋮III⋯I];C2=[III⋮I](20) C_1 = \left[ \begin{matrix} I &0 &0 & \cdots &0 \\ I &I &0 & \cdots &0 \\ I &I &I & \cdots &0 \\ \vdots & \vdots & \vdots & \ddots & \vdots\\ I &I &I & \cdots &I \end{matrix}\right]; C_2 =\left[ \begin{matrix} I \\I \\I \\ \vdots \\I \end{matrix}\right] \tag{20} C1=IIII0III00II000I;C2=IIII(20)

7 matlab求解

function [flag, control_out] = SolveLinearMpc(A, B, C, D, Q, R, sample_period, upper, lower, state_k, reference, Np, Nc)
    if (size(A,1) ~= size(A,2) || ...
        size(B,1) ~= size(A,1) || ...
        size(D,1) ~= size(A,1) || ...
        size(Q,1) ~= size(Q,2) || ...
        size(R,1) ~= size(R,2) || ...
        size(Q,1) ~= size(C,1) || ...
        size(R,1) ~= size(B,2) || ...
        size(C,2) ~= size(A,1) || ...
        size(B,2) ~= size(lower,1) || ...
        size(lower,1) ~= size(upper,1) || ...
        size(state_k,1) ~= size(A,1))
        flag = false;
        return;
    end
    %% ÀëÉ¢»¯
    matrix_i = eye(size(A,1));
%     Ad = inv(matrix_i - sample_period * 0.5 * A) * (matrix_i + sample_period * 0.5 * A);
    Ad = matrix_i + A * sample_period;
    Bd = B * sample_period;
    Dd = D * sample_period;
    Cd = C;
    %% Ô€²âŸØÕó
    F = zeros(Np * size(Cd,1), size(Ad,2));
    Phi = zeros(Np * size(Cd,1), Nc * size(Bd,2));
    E = zeros(Np * size(Cd,1), size(Dd,2));
    matrix_f = zeros(Np * size(C,1), size(A,2));
    F(1:size(Cd,1), 1:size(Ad,2)) = Cd * Ad;
    matrix_f(1:size(Cd,1), 1:size(Ad,2)) = Cd;
    %% update F
    for i = 2:1:Np
        F((i-1) * size(Cd,1) + 1 : i * size(Cd,1), :) = ...
            F((i-2) * size(Cd,1) + 1 : (i-1) * size(Cd,1), :) * Ad;
        matrix_f((i-1) * size(Cd,1) + 1 : i * size(Cd,1), :) = ...
            matrix_f((i-2) * size(Cd,1) + 1 : (i-1) * size(Cd,1), :) * Ad;
    end
    %% update Phi
%     for i = 1:1:Np
%         for j = 1:1:i
%             Phi((i-1) * size(Cd,1) + 1 : i * size(Cd,1), (j-1) * size(Bd,2) + 1 : j * size(Bd, 2)) = ...
%                 matrix_f((i-j) * size(Cd,1) + 1 : (i-j+1) * size(Cd,1), 1 : size(matrix_f,2)) * Bd;
%             if j == Nc
%                 break;
%             end
%         end
%     end
    matrix_phi = matrix_f * Bd;
    Phi(: , 1 : size(Bd,2)) = matrix_phi;
    for i = 1 : Nc - 1
        Phi(:, (i * size(Bd,2) + 1) : (i + 1) * size(Bd,2)) = [zeros(i * size(Cd,1), size(Bd,2)); ...
            matrix_phi(1 : (Np - i) * size(Cd,1), :)];
    end
    %% update E
    E(1 : size(Cd,1), 1 : size(Dd,2)) = Cd * Dd;
    for i = 2:1:Np
        E((i-1) * size(Cd,1) + 1 : i * size(Cd,1), :) = ...
            matrix_f((i-1) * size(Cd,1) + 1 : i * size(Cd,1), :) * Dd +...
            E((i-2) * size(Cd,1) + 1 : (i-1) * size(Cd,1), :);
    end
    %% update Cost Function:   min J = (Y_p - Ref)^T * Qe * (Y_p - Ref) + U^T * Re * U
    %%                         s.t. matrix_inequality_constraint * U ¡Ü matrix_inequality_boundary
    %% convert to QP problem:  min J = 0.5 * U^T * H * U + U^T * G + P
    %%                 where:      H = Phi^T * Qe * Phi + Re
    %%                             G = Phi^T * Qe * M
    %%                             P = M^T Qe * M
    %%                             M = F * X_k + E - Ref
    Qe = zeros(Np * size(Q,1), Np * size(Q,2));
    Re = zeros(Nc * size(R,1), Nc * size(R,2));
    for i = 1:1:Np
        Qe((i-1) * size(Q,1) + 1 : i * size(Q,1), (i-1) * size(Q,2) + 1 : i * size(Q,2)) = Q;
    end
    
    for i = 1:1:Nc
        Re((i-1) * size(R,1) + 1 : i * size(R,1), (i-1) * size(R,2) + 1 : i * size(R,2)) = R;
    end
    
    M = F * state_k + E - reference;
    H = Phi' * Qe * Phi + Re;
    G = Phi' * Qe * M;
    P = M' * Qe * M;
    %% update constraint
    matrix_ctrl_k = zeros(size(Bd,2), Nc * size(Bd,2));
    matrix_ctrl_k(1 : size(Bd,2), 1 : size(Bd,2)) = eye(size(Bd,2));        %% use to get the fisrt contol value
    
    Upper_boundary = zeros(Nc * size(Bd,2), 1);
    Lower_boundary = zeros(Nc * size(Bd,2), 1);
    for i = 1:1:Nc
        Upper_boundary((i-1) * size(Bd,2) + 1 : i * size(Bd,2), :) = upper;
        Lower_boundary((i-1) * size(Bd,2) + 1 : i * size(Bd,2), :) = lower;
    end
    inequality_boundary = [Upper_boundary; - Lower_boundary];
    
    matrix_inequality_constraint_upper = eye(Nc * size(Bd,2), Nc * size(Bd,2));
    matrix_inequality_constraint_lower = eye(Nc * size(Bd,2), Nc * size(Bd,2));
    matrix_inequality_constraint = [matrix_inequality_constraint_upper; ...
                                    -matrix_inequality_constraint_lower];
    %% solve QP 
    solve = - H \ G;   %% optimal slove with no constraint
    is_satisfy_constraint = true;
    for i=1:1:size(matrix_inequality_constraint,1)
        if matrix_inequality_constraint(i, :) * solve > inequality_boundary(i)
            is_satisfy_constraint = false;
        end
    end
    
    if is_satisfy_constraint
        control_out = matrix_ctrl_k * solve;
        flag = true;
    else
        ppp = matrix_inequality_constraint * (H \ matrix_inequality_constraint');
        ddd = (matrix_inequality_constraint * (H \ G) + inequality_boundary);
        lambda = zeros(size(ddd,1), size(ddd,2));
        tolerance = 10;
        for i = 1:38
            lambda_p = lambda;
            for j = 1:size(ddd,1)
                www = ppp(i,:) * lambda - ppp(i,i) * lambda(i,1);
                www = www + ddd(i,1);
                la = - www / ppp(i,i);
                lambda(i,1) = max(0, la);
            end
            tolerance = (lambda - lambda_p)' * (lambda - lambda_p);
            if tolerance < 10e-8
                break;
            end
        end
        solve = - H \ G - H \ matrix_inequality_constraint' * lambda;
        control_out = matrix_ctrl_k * solve; 
        flag = true;
    end
本文章已经生成可运行项目
评论 32
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值