File Input and Output using XML and YAML files

本文介绍如何使用OpenCV进行XML和YAML文件的读写操作,包括基本数据类型、OpenCV数据结构、自定义数据结构的序列化及反序列化过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <opencv2/core/core.hpp>
#include <iostream>
#include <string>

using namespace cv;
using namespace std;

static void help(char** av)
{
	cout << endl
		<< av[0] << " shows the usage of the OpenCV serialization functionality." << endl
		<< "usage: " << endl
		<< av[0] << " outputfile.yml.gz" << endl
		<< "The output file may be either XML (xml) or YAML (yml/yaml). You can even compress it by "
		<< "specifying this in its extension like xml.gz yaml.gz etc... " << endl
		<< "With FileStorage you can serialize objects in OpenCV by using the << and >> operators" << endl
		<< "For example: - create a class and have it serialized" << endl
		<< "             - use it to read and write matrices." << endl;
	system("pause");
}

class MyData
{
public:
	MyData() : A(0), X(0), id()
	{}
	explicit MyData(int) : A(97), X(CV_PI), id("mydata1234") // explicit to avoid implicit conversion
	{}
	void write(FileStorage& fs) const                        //Write serialization for this class
	{
		fs << "{" << "A" << A << "X" << X << "id" << id << "}";
	}
	void read(const FileNode& node)                          //Read serialization for this class
	{
		A = (int)node["A"];
		X = (double)node["X"];
		id = (string)node["id"];
	}
public:   // Data Members
	int A;
	double X;
	string id;
};

//These write and read functions must be defined for the serialization in FileStorage to work
static void write(FileStorage& fs, const std::string&, const MyData& x)
{
	x.write(fs);
}
static void read(const FileNode& node, MyData& x, const MyData& default_value = MyData()) {
	if (node.empty())
		x = default_value;
	else
		x.read(node);
}

// This function will print our custom class to the console
static ostream& operator<<(ostream& out, const MyData& m)
{
	out << "{ id = " << m.id << ", ";
	out << "X = " << m.X << ", ";
	out << "A = " << m.A << "}";
	return out;
}

int main(int ac, char** av)
{


	//if (ac != 2)
	//{
	//	help(av);
	//	return 1;
	//}

	//string filename = av[1];
	string filename = "YML.yml";
	{ //write
		Mat R = Mat_<uchar>::eye(3, 3),
			T = Mat_<double>::zeros(3, 1);
		MyData m(1);

		FileStorage fs(filename, FileStorage::WRITE);

		fs << "iterationNr" << 100;
		fs << "strings" << "[";                              // text - string sequence
		fs << "image1.jpg" << "Awesomeness" << "baboon.jpg";
		fs << "]";                                           // close sequence

		fs << "Mapping";                              // text - mapping
		fs << "{" << "One" << 1;
		fs << "Two" << 2 << "}";

		fs << "R" << R;                                      // cv::Mat
		fs << "T" << T;

		fs << "MyData" << m;                                // your own data structures

		fs.release();                                       // explicit close
		cout << "Write Done." << endl;
	}

	{//read
		cout << endl << "Reading: " << endl;
		FileStorage fs;
		fs.open(filename, FileStorage::READ);

		int itNr;
		//fs["iterationNr"] >> itNr;
		itNr = (int)fs["iterationNr"];
		cout << itNr;
		if (!fs.isOpened())
		{
			cerr << "Failed to open " << filename << endl;
			help(av);
			return 1;
		}

		FileNode n = fs["strings"];                         // Read string sequence - Get node
		if (n.type() != FileNode::SEQ)
		{
			cerr << "strings is not a sequence! FAIL" << endl;
			return 1;
		}

		FileNodeIterator it = n.begin(), it_end = n.end(); // Go through the node
		for (; it != it_end; ++it)
			cout << (string)*it << endl;


		n = fs["Mapping"];                                // Read mappings from a sequence
		cout << "Two  " << (int)(n["Two"]) << "; ";
		cout << "One  " << (int)(n["One"]) << endl << endl;


		MyData m;
		Mat R, T;

		fs["R"] >> R;                                      // Read cv::Mat
		fs["T"] >> T;
		fs["MyData"] >> m;                                 // Read your own structure_

		cout << endl
			<< "R = " << R << endl;
		cout << "T = " << T << endl << endl;
		cout << "MyData = " << endl << m << endl << endl;

		//Show default behavior for non existing nodes
		cout << "Attempt to read NonExisting (should initialize the data structure with its default).";
		fs["NonExisting"] >> m;
		cout << endl << "NonExisting = " << endl << m << endl;
	}

	cout << endl
		<< "Tip: Open up " << filename << " with a text editor to see the serialized data." << endl;

	return 0;
}

Goal
You’ll find answers for the following questions:
• How to print and read text entries to a file and OpenCV using YAML or XML files?
• How to do the same for OpenCV data structures?
• How to do this for your data structures?
• Usage of OpenCV data structures such as
FileStorage, FileNode or FileNodeIterator.

Source code
You can download this from here or find it in the samples/cpp/tutorial_code/core/file_input_output/file_input_outpu
of the OpenCV source code library.

Explanation
Here we talk only about XML and YAML file inputs. Your output (and its respective input) file may have only one of
these extensions and the structure coming from this. They are two kinds of data structures you may serialize:
mappings
(like the STL map) and element sequence (like the STL vector). The difference between these is that in a map every
element has a unique name through what you may access it. For sequences you need to go through them to query a

specific item.


1. XML/YAML File Open and Close. Before you write any content to such file you need to open it and at the end
to close it. The XML/YAML data structure in OpenCV is
FileStorage. To specify that this structure to which
file binds on your hard drive you can use either its constructor or the
open()
function of this:
string filename = "I.xml";
FileStorage
fs(filename, FileStorage::WRITE);
//...
fs.open(filename, FileStorage::READ);
Either one of this you use the second argument is a constant specifying the type of operations you’ll be able to
on them: WRITE, READ or APPEND. The extension specified in the file name also determinates the output
format that will be used. The output may be even compressed if you specify an extension such as
.xml.gz.
The file automatically closes when the
FileStorage objects is destroyed. However, you may explicitly call for
this by using the
release function:

fs.release(); // explicit close


2. Input and Output of text and numbers. The data structure uses the same << output operator that the STL
library. For outputting any type of data structure we need first to specify its name. We do this by just simply
printing out the name of this. For basic types you may follow this with the print of the value :

fs << "iterationNr" << 100;
Reading in is a simple addressing (via the [] operator) and casting operation or a read via the >> operator :
int itNr;
fs[
"iterationNr"] >> itNr;

itNr = (int) fs["iterationNr"];


3. Input/Output of OpenCV Data structures. Well these behave exactly just as the basic C++ types:
Mat R = Mat_<uchar >::eye (3, 3),
T
= Mat_<double>::zeros(3, 1);
fs
<< "R" << R; // Write cv::Mat
fs << "T" << T;
fs[
"R"] >> R; // Read cv::Mat

fs["T"] >> T;


4. Input/Output of vectors (arrays) and associative maps. As I mentioned beforehand, we can output maps and
sequences (array, vector) too. Again we first print the name of the variable and then we have to specify if our
output is either a sequence or map.

For sequence before the first element print the “[” character and after the last one the “]” character:
fs << "strings" << "["; // text - string sequence
fs << "image1.jpg" << "Awesomeness" << "baboon.jpg";
fs
<< "]"; // close sequence
For maps the drill is the same however now we use the “{” and “}” delimiter characters:
fs << "Mapping"; // text - mapping
fs << "{" << "One" << 1;
fs
<< "Two" << 2 << "}";
To read from these we use the FileNode and the FileNodeIterator data structures. The [] operator of the FileStorage class returns a FileNode data type. If the node is sequential we can use the FileNodeIterator to iterate through
the items:
FileNode n = fs["strings"]; // Read string sequence - Get node
if (n.type() != FileNode::SEQ)
{
cerr
<< "strings is not a sequence! FAIL" << endl;
return 1;
}
FileNodeIterator it
= n.begin(), it_end = n.end(); // Go through the node
for (; it != it_end; ++it)
cout
<< (string)*it << endl;
For maps you can use the [] operator again to acces the given item (or the >> operator too)
n = fs["Mapping"]; // Read mappings from a sequence
cout << "Two " << (int)(n["Two"]) << "; ";

cout << "One " << (int)(n["One"]) << endl << endl;


5. Read and write your own data structures. Suppose you have a data structure such as:
class MyData
{
public:
MyData() : A(0), X(0), id() {}
public: // Data Members
int A;
double X;
string id;
};
It’s possible to serialize this through the OpenCV I/O XML/YAML interface (just as in case of the OpenCV data
structures) by adding a read and a write function inside and outside of your class. For the inside part:



void write(FileStorage& fs) const //Write serialization for this class
{
fs << "{" << "A" << A << "X" << X << "id" << id << "}";
}
void read(const FileNode& node) //Read serialization for this class
{
A = (int)node["A"];
X = (double)node["X"];
id = (string)node["id"];
}


Then you need to add the following functions definitions outside the class:
void write(FileStorage& fs, const std::string&, const MyData& x)
{
x.write(fs);
}
void read(const FileNode& node, MyData& x, const MyData& default_value = MyData())
{
if(node.empty())
x
= default_value;
else
x.read(node);
}
Here you can observe that in the read section we defined what happens if the user tries to read a non-existing
node. In this case we just return the default initialization value, however a more verbose solution would be to
return for instance a minus one value for an object ID.
Once you added these four functions use the >> operator for write and the << operator for read:
MyData m(1);
fs
<< "MyData" << m; // your own data structures
fs["MyData"] >> m; // Read your own structure_
Or to try out reading a non-existing read:
fs["NonExisting"] >> m; // Do not add a fs << "NonExisting" << m command for this to work
cout << endl << "NonExisting = " << endl << m << endl;



Result


内容概要:《中文大模型基准测评2025年上半年报告》由SuperCLUE团队发布,详细评估了2025年上半年中文大模型的发展状况。报告涵盖了大模型的关键进展、国内外大模型全景图及差距、专项测评基准介绍等。通过SuperCLUE基准,对45个国内外代表性大模型进行了六大任务(数学推理、科学推理、代码生成、智能体Agent、精确指令遵循、幻觉控制)的综合测评。结果显示,海外模型如o3、o4-mini(high)在推理任务上表现突出,而国内模型如Doubao-Seed-1.6-thinking-250715在智能体Agent和幻觉控制任务上表现出色。此外,报告还分析了模型性价比、效能区间分布,并对代表性模型如Doubao-Seed-1.6-thinking-250715、DeepSeek-R1-0528、GLM-4.5等进行了详细介绍。整体来看,国内大模型在特定任务上已接近国际顶尖水平,但在综合推理能力上仍有提升空间。 适用人群:对大模型技术感兴趣的科研人员、工程师、产品经理及投资者。 使用场景及目标:①了解2025年上半年中文大模型的发展现状与趋势;②评估国内外大模型在不同任务上的表现差异;③为技术选型和性能优化提供参考依据。 其他说明:报告提供了详细的测评方法、评分标准及结果分析,确保评估的科学性和公正性。此外,SuperCLUE团队还发布了多个专项测评基准,涵盖多模态、文本、推理等多个领域,为业界提供全面的测评服务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值