21个TensorFlow项目转换tfrecord:TypeError: 'RGB' has type str, but expected one of: bytes(法二)

博主在Python3.5环境运行《21个TensorFlow项目》第三章data_convert.py将图片转换为tfrecord格式时出错。先是因Python3 range返回非list报错,修改代码后又出现编码和类型错误。查找资料后修改多处代码,最后再次运行该脚本。
部署运行你感兴趣的模型镜像

最近在看21个TensorFlow项目一书中,由于我环境是Python3.5,项目中环境应该是Python2。运行第三章data_prepare文件夹下data_convert.py将图片转换为tfrecord格式时出现

TypeError: 'range' object does not support item assignment

此处错误是因为Python3 range返回的不是list,修改:tfrecord.py第340行将

shuffled_index = range(len(filenames))

修改为

shuffled_index = list(range(len(filenames)))

 

再次运行data_convert.py时出现下列错误:

UnicodeDecodeError: 'gbk' codec can't decode byte 0xff in position 0: illega

TypeError:tf.train.Feature TypeError: 'RGB' has type str, but expected one of: bytes

TypeError: 'water' has type str, but expected one of: bytes

查找了相关资料错误原因可见https://blog.youkuaiyun.com/qq_29921623/article/details/80047339

需要修改下列地方:

tfrecord.py第160行改为  with open(filename, 'rb') as f:

tfrecord.py第94和96行修改为  colorspace = b'RGB'     image_format = b'JPEG'

tfrecord.py第104行修改为  'image/class/text': _bytes_feature(str.encode(text)),

tfrecord.py第106行修改为   'image/filename':_bytes_feature(os.path.basename(str.encode(filename))),

 

再次运行data_convert.py  (python data_convert.py -t pic/ --train-shards 2 --validation-shards 2 --num-threads 2 --dataset-name satellite)

您可能感兴趣的与本文相关的镜像

Python3.10

Python3.10

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

D:\小车例程\9DOFDemo\9DOF_Demo\9DOF_Demo.ino: In function 'void onDataReceived()': D:\小车例程\9DOFDemo\9DOF_Demo\9DOF_Demo.ino:31:16: error: 'class SPIClass' has no member named 'available' D:\小车例程\9DOFDemo\9DOF_Demo\9DOF_Demo.ino:14:22: error: lvalue required as unary '&' operand D:\小车例程\9DOFDemo\9DOF_Demo\9DOF_Demo.ino:40:47: note: in expansion of macro 'START_MARKER' D:\小车例程\9DOFDemo\9DOF_Demo\9DOF_Demo.ino:15:20: error: lvalue required as unary '&' operand D:\小车例程\9DOFDemo\9DOF_Demo\9DOF_Demo.ino:85:47: note: in expansion of macro 'END_MARKER' D:\小车例程\9DOFDemo\9DOF_Demo\9DOF_Demo.ino:15:20: error: lvalue required as unary '&' operand D:\小车例程\9DOFDemo\9DOF_Demo\9DOF_Demo.ino:95:43: note: in expansion of macro 'END_MARKER' D:\小车例程\9DOFDemo\9DOF_Demo\9DOF_Demo.ino: In function 'void setup()': D:\小车例程\9DOFDemo\9DOF_Demo\9DOF_Demo.ino:111:9: error: 'class SPIClass' has no member named 'onData' exit status 1 Compilation error: 'class SPIClass' has no member named 'available' arduino出现以上错误 Traceback (most recent call last): File "C:\Users\hdhfg\PyCharmMiscProject\main.py", line 223, in <module> reconstructor = ImageReconstructor(port='COM3', baudrate=115200) File "C:\Users\hdhfg\PyCharmMiscProject\main.py", line 14, in __init__ self.serial_port = serial.Serial(port, baudrate, timeout=1) ~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\hdhfg\PyCharmMiscProject\.venv\Lib\site-packages\serial\serialwin32.py", line 33, in __init__ super(Serial, self).__init__(*args, **kwargs) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^ File "C:\Users\hdhfg\PyCharmMiscProject\.venv\Lib\site-packages\serial\serialutil.py", line 244, in __init__ self.open() ~~~~~~~~~^^ File "C:\Users\hdhfg\PyCharmMiscProject\.venv\Lib\site-packages\serial\serialwin32.py", line 64, in open raise SerialException("could not open port {!r}: {!r}".format(self.portstr, ctypes.WinError())) serial.serialutil.SerialException: could not open port 'COM3': PermissionError(13, '拒绝访问。', None, 5) python出现以上错误 TypeError:can't convert int' object to str implicitly openmv出现以上错误 修改代码
06-29
from __future__ import annotations import datetime import functools import pytz import io import math import os from collections import namedtuple import re import numpy as np import piexif import piexif.helper from PIL import Image, ImageFont, ImageDraw, ImageColor, PngImagePlugin, ImageOps # pillow_avif needs to be imported somewhere in code for it to work import pillow_avif # noqa: F401 import string import json import hashlib from modules import sd_samplers, shared, script_callbacks, errors from modules.paths_internal import roboto_ttf_file from modules.shared import opts LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) def get_font(fontsize: int): try: return ImageFont.truetype(opts.font or roboto_ttf_file, fontsize) except Exception: return ImageFont.truetype(roboto_ttf_file, fontsize) def image_grid(imgs, batch_size=1, rows=None): if rows is None: if opts.n_rows > 0: rows = opts.n_rows elif opts.n_rows == 0: rows = batch_size elif opts.grid_prevent_empty_spots: rows = math.floor(math.sqrt(len(imgs))) while len(imgs) % rows != 0: rows -= 1 else: rows = math.sqrt(len(imgs)) rows = round(rows) if rows > len(imgs): rows = len(imgs) cols = math.ceil(len(imgs) / rows) params = script_callbacks.ImageGridLoopParams(imgs, cols, rows) script_callbacks.image_grid_callback(params) w, h = map(max, zip(*(img.size for img in imgs))) grid_background_color = ImageColor.getcolor(opts.grid_background_color, 'RGB') grid = Image.new('RGB', size=(params.cols * w, params.rows * h), color=grid_background_color) for i, img in enumerate(params.imgs): img_w, img_h = img.size w_offset, h_offset = 0 if img_w == w else (w - img_w) // 2, 0 if img_h == h else (h - img_h) // 2 grid.paste(img, box=(i % params.cols * w + w_offset, i // params.cols * h + h_offset)) return grid class Grid(namedtuple("_Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"])): @property def tile_count(self) -> int: """ The total number of tiles in the grid. """ return sum(len(row[2]) for row in self.tiles) def split_grid(image: Image.Image, tile_w: int = 512, tile_h: int = 512, overlap: int = 64) -> Grid: w, h = image.size non_overlap_width = tile_w - overlap non_overlap_height = tile_h - overlap cols = math.ceil((w - overlap) / non_overlap_width) rows = math.ceil((h - overlap) / non_overlap_height) dx = (w - tile_w) / (cols - 1) if cols > 1 else 0 dy = (h - tile_h) / (rows - 1) if rows > 1 else 0 grid = Grid([], tile_w, tile_h, w, h, overlap) for row in range(rows): row_images = [] y = int(row * dy) if y + tile_h >= h: y = h - tile_h for col in range(cols): x = int(col * dx) if x + tile_w >= w: x = w - tile_w tile = image.crop((x, y, x + tile_w, y + tile_h)) row_images.append([x, tile_w, tile]) grid.tiles.append([y, tile_h, row_images]) return grid def combine_grid(grid): def make_mask_image(r): r = r * 255 / grid.overlap r = r.astype(np.uint8) return Image.fromarray(r, 'L') mask_w = make_mask_image(np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)) mask_h = make_mask_image(np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)) combined_image = Image.new("RGB", (grid.image_w, grid.image_h)) for y, h, row in grid.tiles: combined_row = Image.new("RGB", (grid.image_w, h)) for x, w, tile in row: if x == 0: combined_row.paste(tile, (0, 0)) continue combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w) combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0)) if y == 0: combined_image.paste(combined_row, (0, 0)) continue combined_image.paste(combined_row.crop((0, 0, combined_row.width, grid.overlap)), (0, y), mask=mask_h) combined_image.paste(combined_row.crop((0, grid.overlap, combined_row.width, h)), (0, y + grid.overlap)) return combined_image class GridAnnotation: def __init__(self, text='', is_active=True): self.text = text self.is_active = is_active self.size = None def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0): color_active = ImageColor.getcolor(opts.grid_text_active_color, 'RGB') color_inactive = ImageColor.getcolor(opts.grid_text_inactive_color, 'RGB') color_background = ImageColor.getcolor(opts.grid_background_color, 'RGB') def wrap(drawing, text, font, line_length): lines = [''] for word in text.split(): line = f'{lines[-1]} {word}'.strip() if drawing.textlength(line, font=font) <= line_length: lines[-1] = line else: lines.append(word) return lines def draw_texts(drawing, draw_x, draw_y, lines, initial_fnt, initial_fontsize): for line in lines: fnt = initial_fnt fontsize = initial_fontsize while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0: fontsize -= 1 fnt = get_font(fontsize) drawing.multiline_text((draw_x, draw_y + line.size[1] / 2), line.text, font=fnt, fill=color_active if line.is_active else color_inactive, anchor="mm", align="center") if not line.is_active: drawing.line((draw_x - line.size[0] // 2, draw_y + line.size[1] // 2, draw_x + line.size[0] // 2, draw_y + line.size[1] // 2), fill=color_inactive, width=4) draw_y += line.size[1] + line_spacing fontsize = (width + height) // 25 line_spacing = fontsize // 2 fnt = get_font(fontsize) pad_left = 0 if sum([sum([len(line.text) for line in lines]) for lines in ver_texts]) == 0 else width * 3 // 4 cols = im.width // width rows = im.height // height assert cols == len(hor_texts), f'bad number of horizontal texts: {len(hor_texts)}; must be {cols}' assert rows == len(ver_texts), f'bad number of vertical texts: {len(ver_texts)}; must be {rows}' calc_img = Image.new("RGB", (1, 1), color_background) calc_d = ImageDraw.Draw(calc_img) for texts, allowed_width in zip(hor_texts + ver_texts, [width] * len(hor_texts) + [pad_left] * len(ver_texts)): items = [] + texts texts.clear() for line in items: wrapped = wrap(calc_d, line.text, fnt, allowed_width) texts += [GridAnnotation(x, line.is_active) for x in wrapped] for line in texts: bbox = calc_d.multiline_textbbox((0, 0), line.text, font=fnt) line.size = (bbox[2] - bbox[0], bbox[3] - bbox[1]) line.allowed_width = allowed_width hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts] ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in ver_texts] pad_top = 0 if sum(hor_text_heights) == 0 else max(hor_text_heights) + line_spacing * 2 result = Image.new("RGB", (im.width + pad_left + margin * (cols-1), im.height + pad_top + margin * (rows-1)), color_background) for row in range(rows): for col in range(cols): cell = im.crop((width * col, height * row, width * (col+1), height * (row+1))) result.paste(cell, (pad_left + (width + margin) * col, pad_top + (height + margin) * row)) d = ImageDraw.Draw(result) for col in range(cols): x = pad_left + (width + margin) * col + width / 2 y = pad_top / 2 - hor_text_heights[col] / 2 draw_texts(d, x, y, hor_texts[col], fnt, fontsize) for row in range(rows): x = pad_left / 2 y = pad_top + (height + margin) * row + height / 2 - ver_text_heights[row] / 2 draw_texts(d, x, y, ver_texts[row], fnt, fontsize) return result def draw_prompt_matrix(im, width, height, all_prompts, margin=0): prompts = all_prompts[1:] boundary = math.ceil(len(prompts) / 2) prompts_horiz = prompts[:boundary] prompts_vert = prompts[boundary:] hor_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_horiz)] for pos in range(1 << len(prompts_horiz))] ver_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_vert)] for pos in range(1 << len(prompts_vert))] return draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin) def resize_image(resize_mode, im, width, height, upscaler_name=None): """ Resizes an image with the specified resize_mode, width, and height. Args: resize_mode: The mode to use when resizing the image. 0: Resize the image to the specified width and height. 1: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess. 2: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image. im: The image to resize. width: The width to resize the image to. height: The height to resize the image to. upscaler_name: The name of the upscaler to use. If not provided, defaults to opts.upscaler_for_img2img. """ upscaler_name = upscaler_name or opts.upscaler_for_img2img def resize(im, w, h): if upscaler_name is None or upscaler_name == "None" or im.mode == 'L': return im.resize((w, h), resample=LANCZOS) scale = max(w / im.width, h / im.height) if scale > 1.0: upscalers = [x for x in shared.sd_upscalers if x.name == upscaler_name] if len(upscalers) == 0: upscaler = shared.sd_upscalers[0] print(f"could not find upscaler named {upscaler_name or '<empty string>'}, using {upscaler.name} as a fallback") else: upscaler = upscalers[0] im = upscaler.scaler.upscale(im, scale, upscaler.data_path) if im.width != w or im.height != h: im = im.resize((w, h), resample=LANCZOS) return im if resize_mode == 0: res = resize(im, width, height) elif resize_mode == 1: ratio = width / height src_ratio = im.width / im.height src_w = width if ratio > src_ratio else im.width * height // im.height src_h = height if ratio <= src_ratio else im.height * width // im.width resized = resize(im, src_w, src_h) res = Image.new("RGB", (width, height)) res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) else: ratio = width / height src_ratio = im.width / im.height src_w = width if ratio < src_ratio else im.width * height // im.height src_h = height if ratio >= src_ratio else im.height * width // im.width resized = resize(im, src_w, src_h) res = Image.new("RGB", (width, height)) res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) if ratio < src_ratio: fill_height = height // 2 - src_h // 2 if fill_height > 0: res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0)) res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h)) elif ratio > src_ratio: fill_width = width // 2 - src_w // 2 if fill_width > 0: res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0)) res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0)) return res if not shared.cmd_opts.unix_filenames_sanitization: invalid_filename_chars = '#<>:"/\\|?*\n\r\t' else: invalid_filename_chars = '/' invalid_filename_prefix = ' ' invalid_filename_postfix = ' .' re_nonletters = re.compile(r'[\s' + string.punctuation + ']+') re_pattern = re.compile(r"(.*?)(?:\[([^\[\]]+)\]|$)") re_pattern_arg = re.compile(r"(.*)<([^>]*)>$") max_filename_part_length = shared.cmd_opts.filenames_max_length NOTHING_AND_SKIP_PREVIOUS_TEXT = object() def sanitize_filename_part(text, replace_spaces=True): if text is None: return None if replace_spaces: text = text.replace(' ', '_') text = text.translate({ord(x): '_' for x in invalid_filename_chars}) text = text.lstrip(invalid_filename_prefix)[:max_filename_part_length] text = text.rstrip(invalid_filename_postfix) return text @functools.cache def get_scheduler_str(sampler_name, scheduler_name): """Returns {Scheduler} if the scheduler is applicable to the sampler""" if scheduler_name == 'Automatic': config = sd_samplers.find_sampler_config(sampler_name) scheduler_name = config.options.get('scheduler', 'Automatic') return scheduler_name.capitalize() @functools.cache def get_sampler_scheduler_str(sampler_name, scheduler_name): """Returns the '{Sampler} {Scheduler}' if the scheduler is applicable to the sampler""" return f'{sampler_name} {get_scheduler_str(sampler_name, scheduler_name)}' def get_sampler_scheduler(p, sampler): """Returns '{Sampler} {Scheduler}' / '{Scheduler}' / 'NOTHING_AND_SKIP_PREVIOUS_TEXT'""" if hasattr(p, 'scheduler') and hasattr(p, 'sampler_name'): if sampler: sampler_scheduler = get_sampler_scheduler_str(p.sampler_name, p.scheduler) else: sampler_scheduler = get_scheduler_str(p.sampler_name, p.scheduler) return sanitize_filename_part(sampler_scheduler, replace_spaces=False) return NOTHING_AND_SKIP_PREVIOUS_TEXT class FilenameGenerator: replacements = { 'basename': lambda self: self.basename or 'img', 'seed': lambda self: self.seed if self.seed is not None else '', 'seed_first': lambda self: self.seed if self.p.batch_size == 1 else self.p.all_seeds[0], 'seed_last': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if self.p.batch_size == 1 else self.p.all_seeds[-1], 'steps': lambda self: self.p and self.p.steps, 'cfg': lambda self: self.p and self.p.cfg_scale, 'width': lambda self: self.image.width, 'height': lambda self: self.image.height, 'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False), 'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False), 'sampler_scheduler': lambda self: self.p and get_sampler_scheduler(self.p, True), 'scheduler': lambda self: self.p and get_sampler_scheduler(self.p, False), 'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash), 'model_name': lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.name_for_extra, replace_spaces=False), 'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'), 'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime<Format>], [datetime<Format><Time Zone>] 'job_timestamp': lambda self: getattr(self.p, "job_timestamp", shared.state.job_timestamp), 'prompt_hash': lambda self, *args: self.string_hash(self.prompt, *args), 'negative_prompt_hash': lambda self, *args: self.string_hash(self.p.negative_prompt, *args), 'full_prompt_hash': lambda self, *args: self.string_hash(f"{self.p.prompt} {self.p.negative_prompt}", *args), # a space in between to create a unique string 'prompt': lambda self: sanitize_filename_part(self.prompt), 'prompt_no_styles': lambda self: self.prompt_no_style(), 'prompt_spaces': lambda self: sanitize_filename_part(self.prompt, replace_spaces=False), 'prompt_words': lambda self: self.prompt_words(), 'batch_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if self.p.batch_size == 1 or self.zip else self.p.batch_index + 1, 'batch_size': lambda self: self.p.batch_size, 'generation_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if (self.p.n_iter == 1 and self.p.batch_size == 1) or self.zip else self.p.iteration * self.p.batch_size + self.p.batch_index + 1, 'hasprompt': lambda self, *args: self.hasprompt(*args), # accepts formats:[hasprompt<prompt1|default><prompt2>..] 'clip_skip': lambda self: opts.data["CLIP_stop_at_last_layers"], 'denoising': lambda self: self.p.denoising_strength if self.p and self.p.denoising_strength else NOTHING_AND_SKIP_PREVIOUS_TEXT, 'user': lambda self: self.p.user, 'vae_filename': lambda self: self.get_vae_filename(), 'none': lambda self: '', # Overrides the default, so you can get just the sequence number 'image_hash': lambda self, *args: self.image_hash(*args) # accepts formats: [image_hash<length>] default full hash } default_time_format = '%Y%m%d%H%M%S' def __init__(self, p, seed, prompt, image, zip=False, basename=""): self.p = p self.seed = seed self.prompt = prompt self.image = image self.zip = zip self.basename = basename def get_vae_filename(self): """Get the name of the VAE file.""" import modules.sd_vae as sd_vae if sd_vae.loaded_vae_file is None: return "NoneType" file_name = os.path.basename(sd_vae.loaded_vae_file) split_file_name = file_name.split('.') if len(split_file_name) > 1 and split_file_name[0] == '': return split_file_name[1] # if the first character of the filename is "." then [1] is obtained. else: return split_file_name[0] def hasprompt(self, *args): lower = self.prompt.lower() if self.p is None or self.prompt is None: return None outres = "" for arg in args: if arg != "": division = arg.split("|") expected = division[0].lower() default = division[1] if len(division) > 1 else "" if lower.find(expected) >= 0: outres = f'{outres}{expected}' else: outres = outres if default == "" else f'{outres}{default}' return sanitize_filename_part(outres) def prompt_no_style(self): if self.p is None or self.prompt is None: return None prompt_no_style = self.prompt for style in shared.prompt_styles.get_style_prompts(self.p.styles): if style: for part in style.split("{prompt}"): prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',') prompt_no_style = prompt_no_style.replace(style, "").strip().strip(',').strip() return sanitize_filename_part(prompt_no_style, replace_spaces=False) def prompt_words(self): words = [x for x in re_nonletters.split(self.prompt or "") if x] if len(words) == 0: words = ["empty"] return sanitize_filename_part(" ".join(words[0:opts.directories_max_prompt_words]), replace_spaces=False) def datetime(self, *args): time_datetime = datetime.datetime.now() time_format = args[0] if (args and args[0] != "") else self.default_time_format try: time_zone = pytz.timezone(args[1]) if len(args) > 1 else None except pytz.exceptions.UnknownTimeZoneError: time_zone = None time_zone_time = time_datetime.astimezone(time_zone) try: formatted_time = time_zone_time.strftime(time_format) except (ValueError, TypeError): formatted_time = time_zone_time.strftime(self.default_time_format) return sanitize_filename_part(formatted_time, replace_spaces=False) def image_hash(self, *args): length = int(args[0]) if (args and args[0] != "") else None return hashlib.sha256(self.image.tobytes()).hexdigest()[0:length] def string_hash(self, text, *args): length = int(args[0]) if (args and args[0] != "") else 8 return hashlib.sha256(text.encode()).hexdigest()[0:length] def apply(self, x): res = '' for m in re_pattern.finditer(x): text, pattern = m.groups() if pattern is None: res += text continue pattern_args = [] while True: m = re_pattern_arg.match(pattern) if m is None: break pattern, arg = m.groups() pattern_args.insert(0, arg) fun = self.replacements.get(pattern.lower()) if fun is not None: try: replacement = fun(self, *pattern_args) except Exception: replacement = None errors.report(f"Error adding [{pattern}] to filename", exc_info=True) if replacement == NOTHING_AND_SKIP_PREVIOUS_TEXT: continue elif replacement is not None: res += text + str(replacement) continue res += f'{text}[{pattern}]' return res def get_next_sequence_number(path, basename): """ Determines and returns the next sequence number to use when saving an image in the specified directory. The sequence starts at 0. """ result = -1 if basename != '': basename = f"{basename}-" prefix_length = len(basename) for p in os.listdir(path): if p.startswith(basename): parts = os.path.splitext(p[prefix_length:])[0].split('-') # splits the filename (removing the basename first if one is defined, so the sequence number is always the first element) try: result = max(int(parts[0]), result) except ValueError: pass return result + 1 def save_image_with_geninfo(image, geninfo, filename, extension=None, existing_pnginfo=None, pnginfo_section_name='parameters'): """ Saves image to filename, including geninfo as text information for generation info. For PNG images, geninfo is added to existing pnginfo dictionary using the pnginfo_section_name argument as key. For JPG images, there's no dictionary and geninfo just replaces the EXIF description. """ if extension is None: extension = os.path.splitext(filename)[1] image_format = Image.registered_extensions()[extension] if extension.lower() == '.png': existing_pnginfo = existing_pnginfo or {} if opts.enable_pnginfo: existing_pnginfo[pnginfo_section_name] = geninfo if opts.enable_pnginfo: pnginfo_data = PngImagePlugin.PngInfo() for k, v in (existing_pnginfo or {}).items(): pnginfo_data.add_text(k, str(v)) else: pnginfo_data = None image.save(filename, format=image_format, quality=opts.jpeg_quality, pnginfo=pnginfo_data) elif extension.lower() in (".jpg", ".jpeg", ".webp"): if image.mode == 'RGBA': image = image.convert("RGB") elif image.mode == 'I;16': image = image.point(lambda p: p * 0.0038910505836576).convert("RGB" if extension.lower() == ".webp" else "L") image.save(filename, format=image_format, quality=opts.jpeg_quality, lossless=opts.webp_lossless) if opts.enable_pnginfo and geninfo is not None: exif_bytes = piexif.dump({ "Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(geninfo or "", encoding="unicode") }, }) piexif.insert(exif_bytes, filename) elif extension.lower() == '.avif': if opts.enable_pnginfo and geninfo is not None: exif_bytes = piexif.dump({ "Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(geninfo or "", encoding="unicode") }, }) else: exif_bytes = None image.save(filename,format=image_format, quality=opts.jpeg_quality, exif=exif_bytes) elif extension.lower() == ".gif": image.save(filename, format=image_format, comment=geninfo) else: image.save(filename, format=image_format, quality=opts.jpeg_quality) def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None, forced_filename=None, suffix="", save_to_dirs=None): """Save an image. Args: image (`PIL.Image`): The image to be saved. path (`str`): The directory to save the image. Note, the option `save_to_dirs` will make the image to be saved into a sub directory. basename (`str`): The base filename which will be applied to `filename pattern`. seed, prompt, short_filename, extension (`str`): Image file extension, default is `png`. pngsectionname (`str`): Specify the name of the section which `info` will be saved in. info (`str` or `PngImagePlugin.iTXt`): PNG info chunks. existing_info (`dict`): Additional PNG info. `existing_info == {pngsectionname: info, ...}` no_prompt: TODO I don't know its meaning. p (`StableDiffusionProcessing`) forced_filename (`str`): If specified, `basename` and filename pattern will be ignored. save_to_dirs (bool): If true, the image will be saved into a subdirectory of `path`. Returns: (fullfn, txt_fullfn) fullfn (`str`): The full path of the saved imaged. txt_fullfn (`str` or None): If a text file is saved for this image, this will be its full path. Otherwise None. """ namegen = FilenameGenerator(p, seed, prompt, image, basename=basename) # WebP and JPG formats have maximum dimension limits of 16383 and 65535 respectively. switch to PNG which has a much higher limit if (image.height > 65535 or image.width > 65535) and extension.lower() in ("jpg", "jpeg") or (image.height > 16383 or image.width > 16383) and extension.lower() == "webp": print('Image dimensions too large; saving as PNG') extension = "png" if save_to_dirs is None: save_to_dirs = (grid and opts.grid_save_to_dirs) or (not grid and opts.save_to_dirs and not no_prompt) if save_to_dirs: dirname = namegen.apply(opts.directories_filename_pattern or "[prompt_words]").lstrip(' ').rstrip('\\ /') path = os.path.join(path, dirname) os.makedirs(path, exist_ok=True) if forced_filename is None: if short_filename or seed is None: file_decoration = "" elif opts.save_to_dirs: file_decoration = opts.samples_filename_pattern or "[seed]" else: file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]" file_decoration = namegen.apply(file_decoration) + suffix add_number = opts.save_images_add_number or file_decoration == '' if file_decoration != "" and add_number: file_decoration = f"-{file_decoration}" if add_number: basecount = get_next_sequence_number(path, basename) fullfn = None for i in range(500): fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}" fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}") if not os.path.exists(fullfn): break else: fullfn = os.path.join(path, f"{file_decoration}.{extension}") else: fullfn = os.path.join(path, f"{forced_filename}.{extension}") pnginfo = existing_info or {} if info is not None: pnginfo[pnginfo_section_name] = info params = script_callbacks.ImageSaveParams(image, p, fullfn, pnginfo) script_callbacks.before_image_saved_callback(params) image = params.image fullfn = params.filename info = params.pnginfo.get(pnginfo_section_name, None) def _atomically_save_image(image_to_save, filename_without_extension, extension): """ save image with .tmp extension to avoid race condition when another process detects new image in the directory """ temp_file_path = f"{filename_without_extension}.tmp" save_image_with_geninfo(image_to_save, info, temp_file_path, extension, existing_pnginfo=params.pnginfo, pnginfo_section_name=pnginfo_section_name) filename = filename_without_extension + extension if shared.opts.save_images_replace_action != "Replace": n = 0 while os.path.exists(filename): n += 1 filename = f"{filename_without_extension}-{n}{extension}" os.replace(temp_file_path, filename) fullfn_without_extension, extension = os.path.splitext(params.filename) if hasattr(os, 'statvfs'): max_name_len = os.statvfs(path).f_namemax fullfn_without_extension = fullfn_without_extension[:max_name_len - max(4, len(extension))] params.filename = fullfn_without_extension + extension fullfn = params.filename _atomically_save_image(image, fullfn_without_extension, extension) image.already_saved_as = fullfn oversize = image.width > opts.target_side_length or image.height > opts.target_side_length if opts.export_for_4chan and (oversize or os.stat(fullfn).st_size > opts.img_downscale_threshold * 1024 * 1024): ratio = image.width / image.height resize_to = None if oversize and ratio > 1: resize_to = round(opts.target_side_length), round(image.height * opts.target_side_length / image.width) elif oversize: resize_to = round(image.width * opts.target_side_length / image.height), round(opts.target_side_length) if resize_to is not None: try: # Resizing image with LANCZOS could throw an exception if e.g. image mode is I;16 image = image.resize(resize_to, LANCZOS) except Exception: image = image.resize(resize_to) try: _atomically_save_image(image, fullfn_without_extension, ".jpg") except Exception as e: errors.display(e, "saving image as downscaled JPG") if opts.save_txt and info is not None: txt_fullfn = f"{fullfn_without_extension}.txt" with open(txt_fullfn, "w", encoding="utf8") as file: file.write(f"{info}\n") else: txt_fullfn = None script_callbacks.image_saved_callback(params) return fullfn, txt_fullfn IGNORED_INFO_KEYS = { 'jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif', 'loop', 'background', 'timestamp', 'duration', 'progressive', 'progression', 'icc_profile', 'chromaticity', 'photoshop', } def read_info_from_image(image: Image.Image) -> tuple[str | None, dict]: items = (image.info or {}).copy() geninfo = items.pop('parameters', None) if "exif" in items: exif_data = items["exif"] try: exif = piexif.load(exif_data) except OSError: # memory / exif was not valid so piexif tried to read from a file exif = None exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'') try: exif_comment = piexif.helper.UserComment.load(exif_comment) except ValueError: exif_comment = exif_comment.decode('utf8', errors="ignore") if exif_comment: geninfo = exif_comment elif "comment" in items: # for gif if isinstance(items["comment"], bytes): geninfo = items["comment"].decode('utf8', errors="ignore") else: geninfo = items["comment"] for field in IGNORED_INFO_KEYS: items.pop(field, None) if items.get("Software", None) == "NovelAI": try: json_info = json.loads(items["Comment"]) sampler = sd_samplers.samplers_map.get(json_info["sampler"], "Euler a") geninfo = f"""{items["Description"]} Negative prompt: {json_info["uc"]} Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337""" except Exception: errors.report("Error parsing NovelAI image generation parameters", exc_info=True) return geninfo, items def image_data(data): import gradio as gr try: image = read(io.BytesIO(data)) textinfo, _ = read_info_from_image(image) return textinfo, None except Exception: pass try: text = data.decode('utf8') assert len(text) < 10000 return text, None except Exception: pass return gr.update(), None def flatten(img, bgcolor): """replaces transparency with bgcolor (example: "#ffffff"), returning an RGB mode image with no transparency""" if img.mode == "RGBA": background = Image.new('RGBA', img.size, bgcolor) background.paste(img, mask=img) img = background return img.convert('RGB') def read(fp, **kwargs): image = Image.open(fp, **kwargs) image = fix_image(image) return image def fix_image(image: Image.Image): if image is None: return None try: image = ImageOps.exif_transpose(image) image = fix_png_transparency(image) except Exception: pass return image def fix_png_transparency(image: Image.Image): if image.mode not in ("RGB", "P") or not isinstance(image.info.get("transparency"), bytes): return image image = image.convert("RGBA") return image详细解释一下
最新发布
10-31
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值