Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
- Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
- The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0. A solution set is: (-1, 0, 0, 1) (-2, -1, 1, 2) (-2, 0, 0, 2)
在3 sum的基础上进行修改;
代码如下(C++):
<pre name="code" class="cpp"> vector<vector<int>> threeSum(vector<int>& nums,int target);
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> res;
if(nums.size()<4) return res;
sort(nums.begin(),nums.end());
for(int i=0;i<nums.size();i++)
{
if(i>0&&nums[i]==nums[i-1]) continue;//去重
int a=nums[i];
vector<int> tmp(nums.begin()+i+1,nums.end());
vector<vector<int>> ret=threeSum(tmp,target-a);
for(int j=0;j<ret.size();j++)
{
ret[j].insert(ret[j].begin(),a);
res.push_back(ret[j]);
}
}
return res;
}
vector<vector<int>> threeSum(vector<int>& nums,int target) {
vector<vector<int>> res;
if(nums.size()<3) return res;
for(int i=0;i<nums.size();i++)
{
if(i>0&&nums[i]==nums[i-1]) continue;//去重
int a=nums[i];
int low=i+1;
int high=nums.size()-1;
while(low<high)
{
if(nums[low]+nums[high]+a>target)
{
//do{
high--;
//}while(nums[high]==nums[high+1]);
}
else if(nums[low]+nums[high]+a<target)
{
//do{
low++;
//}while(nums[low]==nums[low-1]);
}
else{
vector<int> tmp(3);
tmp[0]=a;
tmp[1]=nums[low];
tmp[2]=nums[high];
res.push_back(tmp);
do{
low++;
}while(nums[low]==nums[low-1]); //去重
}
}
}
return res;
}