Hdu 6047 Maximum Sequence【贪心+优先队列】

序列问题求解
本文介绍了一个关于序列的最大值求解问题,给出了问题描述、输入输出样例及解析,并提供了AC代码实现,通过优先队列来解决序列问题。

Maximum Sequence

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 422    Accepted Submission(s): 226


Problem Description
Steph is extremely obsessed with “sequence problems” that are usually seen on magazines: Given the sequence 11, 23, 30, 35, what is the next number? Steph always finds them too easy for such a genius like himself until one day Klay comes up with a problem and ask him about it.

Given two integer sequences {ai} and {bi} with the same length n, you are to find the next n numbers of {ai}:an+1a2n. Just like always, there are some restrictions on an+1a2n: for each number ai, you must choose a number bk from {bi}, and it must satisfy ai≤max{aj-j│bk≤j<i}, and any bk can’t be chosen more than once. Apparently, there are a great many possibilities, so you are required to find max{2nn+1ai} modulo 109+7 .

Now Steph finds it too hard to solve the problem, please help him.
 

Input
The input contains no more than 20 test cases.
For each test case, the first line consists of one integer n. The next line consists of n integers representing {ai}. And the third line consists of n integers representing {bi}.
1≤n≤250000, n≤a_i≤1500000, 1≤b_i≤n.
 

Output
For each test case, print the answer on one line: max{2nn+1ai} modulo 109+7。
 

Sample Input
4 8 11 8 5 3 1 4 2
 

Sample Output
27
Hint
For the first sample: 1. Choose 2 from {bi}, then a_2…a_4 are available for a_5, and you can let a_5=a_2-2=9; 2. Choose 1 from {bi}, then a_1…a_5 are available for a_6, and you can let a_6=a_2-2=9;

题目大意:

给你长度为N的A数组,同时给你一个长度为N的B数组,让你每次从B数组中取一个数(bk),在A数组中,从bk到当前位子中,找一个最大的数A【i】-i放到当前位子上。

问怎样分配能够使得后N个数和最大。


思路:


因为越到后边数会越小,贡献也会越小,所以我们直接sort一下B数组,然后按序选择即可。


过程我们可以用优先队列维护一下,也可以用线段树暴力维护。


Ac代码:

#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
#define ll __int64
struct node
{
    int val;
    int pos;
    bool friend operator <(node a,node b )
    {
        return a.val<b.val;
    }
}now,nex;
int a[350000];
int b[350000];
const ll mod=1e9+7;
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        priority_queue<node>s;
        for(int i=1;i<=n;i++)scanf("%d",&a[i]);
        for(int i=1;i<=n;i++)scanf("%d",&b[i]);
        sort(b+1,b+1+n);
        for(int i=1;i<=n;i++)
        {
            now.val=a[i]-i;
            now.pos=i;
            s.push(now);
        }
        ll output=0;
        for(int i=1;i<=n;i++)
        {
            int nowpos=i+n;
            while(!s.empty())
            {
                now=s.top();
                if(now.pos<b[i])s.pop();
                else break;
            }
            now=s.top();
            output+=(ll)now.val;
            nex.pos=nowpos;
            nex.val=now.val-(i+n);
            s.push(nex);
        }
        printf("%I64d\n",(output%mod+mod)%mod);
    }
}










对于HDU4546问题,还可以使用优先队列(Priority Queue)来解决。以下是使用优先队列的解法思路: 1. 首先,将数组a进行排序,以便后续处理。 2. 创建一个优先队列(最小堆),用于存储组合之和的候选值。 3. 初始化优先队列,将初始情况(即前0个数的组合之和)加入队列。 4. 开始从1到n遍历数组a的元素,对于每个元素a[i],将当前队列中的所有候选值取出,分别加上a[i],然后再将加和的结果作为新的候选值加入队列。 5. 重复步骤4直到遍历完所有元素。 6. 当队列的大小超过k时,将队列中的最小值弹出。 7. 最后,队列中的所有候选值之和即为前k小的组合之和。 以下是使用优先队列解决HDU4546问题的代码示例: ```cpp #include <iostream> #include <vector> #include <queue> #include <functional> using namespace std; int main() { int n, k; cin >> n >> k; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } sort(a.begin(), a.end()); // 对数组a进行排序 priority_queue<long long, vector<long long>, greater<long long>> pq; // 最小堆 pq.push(0); // 初始情况,前0个数的组合之和为0 for (int i = 0; i < n; i++) { long long num = pq.top(); // 取出当前队列中的最小值 pq.pop(); for (int j = i + 1; j <= n; j++) { pq.push(num + a[i]); // 将所有加和结果作为新的候选值加入队列 num += a[i]; } if (pq.size() > k) { pq.pop(); // 当队列大小超过k时,弹出最小值 } } long long sum = 0; while (!pq.empty()) { sum += pq.top(); // 求队列中所有候选值之和 pq.pop(); } cout << sum << endl; return 0; } ``` 使用优先队列的方法可以有效地找到前k小的组合之和,时间复杂度为O(nklog(k))。希望这个解法对你有所帮助!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值