Codeforces 417C Football【思维】

本文介绍了一种足球赛程安排算法,确保每个队伍在比赛中恰好获胜K次,并满足每两队仅比赛一次的条件。通过构造合理的比赛序列,解决了由Pavel发起的足球友谊赛结果推演问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C. Football
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

One day, at the "Russian Code Cup" event it was decided to play football as an out of competition event. All participants was divided into n teams and played several matches, two teams could not play against each other more than once.

The appointed Judge was the most experienced member — Pavel. But since he was the wisest of all, he soon got bored of the game and fell asleep. Waking up, he discovered that the tournament is over and the teams want to know the results of all the matches.

Pavel didn't want anyone to discover about him sleeping and not keeping an eye on the results, so he decided to recover the results of all games. To do this, he asked all the teams and learned that the real winner was friendship, that is, each team beat the other teams exactly k times. Help Pavel come up with chronology of the tournir that meets all the conditions, or otherwise report that there is no such table.

Input

The first line contains two integers — n and k (1 ≤ n, k ≤ 1000).

Output

In the first line print an integer m — number of the played games. The following m lines should contain the information about all the matches, one match per line. The i-th line should contain two integers ai and bi (1 ≤ ai, bi ≤ n; ai ≠ bi). The numbers ai and bi mean, that in the i-th match the team with number ai won against the team with number bi. You can assume, that the teams are numbered from 1 to n.

If a tournir that meets the conditions of the problem does not exist, then print -1.

Examples
Input
3 1
Output
3
1 2
2 3
3 1

题目大意:


一共有N个球队,已知每个球队获胜的场次都是K次,问怎样分配比赛使得每个队都能获胜K次,且每两个队之间至多进行一场比赛。


思路:


将比赛可能进行的场次看成无向边,那么对应一个有N个球队的完全无向图的边数为n*(n-1)/2条,也就是最多有这些比赛场次。

对应我们知道,每个队伍能够进行的比赛数都是n-1场,那么平均分配一下即可,若k*n<=(n-1)*n/2.那么肯定存在解,我们对应将每个队伍的获胜场次都控制在K次即可。

否则无解。


Ac代码:

#include<stdio.h>
#include<string.h>
using namespace std;
int degree[4000];
int main()
{
    int n,k;
    while(~scanf("%d%d",&n,&k))
    {
        memset(degree,0,sizeof(degree));
        if((n*(n-1)/2)>=n*k)
        {
            printf("%d\n",n*k);
            for(int i=1;i<=n;i++)
            {
                for(int j=i;j<=n;j++)
                {
                    if(i==j)continue;
                    if(degree[i]<k)
                    {
                        printf("%d %d\n",i,j);degree[i]++;
                    }
                    else if(degree[j]<k)
                    {
                        printf("%d %d\n",j,i);degree[j]++;
                    }
                    else continue;
                }
            }
        }
        else printf("-1\n");
    }
}








### Codeforces 思维题解题思路和技巧 #### 预处理的重要性 对于许多竞赛编程问题而言,预处理能够显著提高效率并简化后续操作。通过提前计算某些固定的数据结构或模式匹配表,可以在实际求解过程中节省大量时间。例如,在字符串处理类题目中预先构建哈希表来加速查找过程[^1]。 #### 算法优化策略 针对特定类型的输入数据设计高效的解决方案至关重要。当面对大规模测试案例时,简单的暴力破解往往无法满足时限要求;此时则需考虑更高级别的算法改进措施,比如动态规划、贪心算法或是图论中的最短路径算法等。此外,合理利用空间换取时间也是一种常见的优化手段[^2]。 #### STL库的应用价值 C++标准模板库提供了丰富的容器类型(vector, deque)、关联式容器(set,map)以及各种迭代器支持,极大地便利了程序开发工作。熟练掌握这些工具不仅有助于快速实现功能模块,还能有效减少代码量从而降低出错几率。特别是在涉及频繁插入删除场景下,优先选用双向队列deque而非单向链表list可获得更好的性能表现。 ```cpp #include <iostream> #include <deque> using namespace std; int main(){ deque<int> dq; // 向两端添加元素 dq.push_back(5); dq.push_front(3); cout << "Front element is: " << dq.front() << endl; cout << "Back element is : " << dq.back() << endl; return 0; } ``` #### 实际应用实例分析 以一道具体题目为例:给定一系列查询指令,分别表示往左端/右端插入数值或者是询问某个指定位置到边界之间的最小距离。此题目的关键在于如何高效地追踪最新状态而无需重复更新整个数组。采用双指针技术配合静态分配的一维数组即可轻松解决上述需求,同时保证O(n)级别的总运行成本[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值