Codeforces 518D Ilya and Escalator【概率dp】

D. Ilya and Escalator
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Ilya got tired of sports programming, left university and got a job in the subway. He was given the task to determine the escalator load factor.

Let's assume that n people stand in the queue for the escalator. At each second one of the two following possibilities takes place: either the first person in the queue enters the escalator with probability p, or the first person in the queue doesn't move with probability (1 - p), paralyzed by his fear of escalators and making the whole queue wait behind him.

Formally speaking, the i-th person in the queue cannot enter the escalator until people with indices from 1 to i - 1 inclusive enter it. In one second only one person can enter the escalator. The escalator is infinite, so if a person enters it, he never leaves it, that is he will be standing on the escalator at any following second. Ilya needs to count the expected value of the number of people standing on the escalator after t seconds.

Your task is to help him solve this complicated task.

Input

The first line of the input contains three numbers n, p, t (1 ≤ n, t ≤ 2000, 0 ≤ p ≤ 1). Numbers n and t are integers, number p is real, given with exactly two digits after the decimal point.

Output

Print a single real number — the expected number of people who will be standing on the escalator after t seconds. The absolute or relative error mustn't exceed 10 - 6.

Examples
Input
1 0.50 1
Output
0.5
Input
1 0.50 4
Output
0.9375
Input
4 0.20 2
Output
0.4

题目大意:

一共有N个人站成一队 ,一共有t秒,每秒第一个人有p概率上电梯,有(1-p)概率不上电梯。

问t秒结束时,上电梯的期望人数。


思路:


1、很明显,概率dp.设定dp【i】【j】【2】:

①dp【i】【j】【0】表示到时间i,电梯上已经有了j个人,且这一秒没有人上电梯的概率。

②dp【i】【j】【1】表示到时间i,电梯上已经有了j个人,且这一秒有人上电梯的概率。


2、那么不难推出其状态转移方程:

①dp【i】【j】【0】=(dp【i-1】【j】【0】+dp【i-1】【j】【1】)*(1-p)

②dp【i】【j】【1】=(dp【i-1】【j-1】【0】+dp【i-1】【j-1】【1】)*p


3、那么最终统计ans即可。(注意该结束的时候必须结束);


Ac代码:

#include<stdio.h>
#include<string.h>
using namespace std;
double dp[2005][2005][2];
int main()
{
    int n,t;
    double p;
    while(~scanf("%d%lf%d",&n,&p,&t))
    {
        memset(dp,0,sizeof(dp));
        dp[0][0][0]=1;
        for(int i=1;i<=t;i++)
        {
            for(int j=0;j<=n;j++)
            {
                dp[i][j][0]=(dp[i-1][j][0]+dp[i-1][j][1])*(1-p);
                dp[i][j][1]=(dp[i-1][j-1][0]+dp[i-1][j-1][1])*p;
            }
        }
        double ans=0;
        for(int i=1;i<=t;i++)ans+=dp[i][n][1]*n;
        for(int i=1;i<n;i++)
        {
            ans+=dp[t][i][0]*i;
            ans+=dp[t][i][1]*i;
        }
        printf("%lf\n",ans);
    }
}



【电力系统】单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)内容概要:本文档围绕“单机无穷大电力系统短路故障暂态稳定Simulink仿真”展开,提供了完整的仿真模型与说明文档,重点研究电力系统在发生短路故障后的暂态稳定性问题。通过Simulink搭建单机无穷大系统模型,模拟不同类型的短路故障(如三相短路),分析系统在故障期间及切除后的动态响应,包括发电机转子角度、转速、电压和功率等关键参数的变化,进而评估系统的暂态稳定能力。该仿真有助于理解电力系统稳定性机理,掌握暂态过程分析方法。; 适合人群:电气工程及相关专业的本科生、研究生,以及从事电力系统分析、运行与控制工作的科研人员和工程师。; 使用场景及目标:①学习电力系统暂态稳定的基本概念与分析方法;②掌握利用Simulink进行电力系统建模与仿真的技能;③研究短路故障对系统稳定性的影响及提高稳定性的措施(如故障清除时间优化);④辅助课程设计、毕业设计或科研项目中的系统仿真验证。; 阅读建议:建议结合电力系统稳定性理论知识进行学习,先理解仿真模型各模块的功能与参数设置,再运行仿真并仔细分析输出结果,尝试改变故障类型或系统参数以观察其对稳定性的影响,从而深化对暂态稳定问题的理解。
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.youkuaiyun.com/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值