Codeforces Round #401(Div. 2)B. Game of Credit Cards【贪心】

本文介绍了一个有趣的数字游戏,通过制定最优策略来减少或增加玩家在游戏中受到惩罚的次数。游戏涉及两个玩家,每个玩家有一组数字,目标是最小化或最大化对手通过数字比较获得的优势。

B. Game of Credit Cards
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

After the fourth season Sherlock and Moriary have realized the whole foolishness of the battle between them and decided to continue their competitions in peaceful game of Credit Cards.

Rules of this game are simple: each player bring his favourite n-digit credit card. Then both players name the digits written on their cards one by one. If two digits are not equal, then the player, whose digit is smaller gets a flick (knock in the forehead usually made with a forefinger) from the other player. For example, if n = 3, Sherlock's card is 123 and Moriarty's card has number 321, first Sherlock names 1 and Moriarty names 3 so Sherlock gets a flick. Then they both digit 2 so no one gets a flick. Finally, Sherlock names 3, while Moriarty names 1 and gets a flick.

Of course, Sherlock will play honestly naming digits one by one in the order they are given, while Moriary, as a true villain, plans to cheat. He is going to name his digits in some other order (however, he is not going to change the overall number of occurences of each digit). For example, in case above Moriarty could name 1, 2, 3 and get no flicks at all, or he can name 2, 3 and 1 to give Sherlock two flicks.

Your goal is to find out the minimum possible number of flicks Moriarty will get (no one likes flicks) and the maximum possible number of flicks Sherlock can get from Moriarty. Note, that these two goals are different and the optimal result may be obtained by using different strategies.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 1000) — the number of digits in the cards Sherlock and Moriarty are going to use.

The second line contains n digits — Sherlock's credit card number.

The third line contains n digits — Moriarty's credit card number.

Output

First print the minimum possible number of flicks Moriarty will get. Then print the maximum possible number of flicks that Sherlock can get from Moriarty.

Examples
Input
3
123
321
Output
0
2
Input
2
88
00
Output
2
0
Note

First sample is elaborated in the problem statement. In the second sample, there is no way Moriarty can avoid getting two flicks.


题目大意:

现在有A.B两个人玩游戏,每个人都有N个卡片,卡片上的数字已知。一共进行N轮游戏,输的人会得到一个脑蹦(弹脑门).游戏规则很简单,就是比较两个人出牌的大小。

问B输的最少次数以及A输的最大次数。


思路:


xjb贪心一波就可以了,首先将A的卡片和B的卡片都从小到大排序一波:

①B输的最少:我们O(n)枚举每一轮A的出牌,那么对应我们B的出牌就是要拿第一张大于等于a【i】的牌去干A.这样就能够达到目标。

②A输的最多:我们依旧O(n)枚举每一轮A的出牌,那么对应我们B的出牌就是要拿第一张大于a【i】的牌去干A.这样就能够达到目标。


Ac代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[1005];
int b[1005];
int use[1005];
int main()
{
    char s[1005];
    int n;
    while(~scanf("%d",&n))
    {
        scanf("%s",s);
        for(int i=0;i<n;i++)a[i]=s[i]-'0';
        sort(a,a+n);
        scanf("%s",s);
        for(int i=0;i<n;i++)b[i]=s[i]-'0';
        sort(b,b+n);
        memset(use,0,sizeof(use));
        int ans=0;
        for(int i=0;i<n;i++)
        {
            int flag=0;
            for(int j=0;j<n;j++)
            {
                if(use[j]==1)continue;
                if(b[j]>=a[i])
                {
                    flag=1;
                    use[j]=1;
                    break;
                }
            }
            if(flag==0)
            {
                ans++;
                for(int j=0;j<n;j++)
                {
                    if(use[j]==0)
                    {
                        use[j]=1;
                        break;
                    }
                }
            }
        }
        printf("%d\n",ans);
        ans=0;
        memset(use,0,sizeof(use));
        for(int i=0;i<n;i++)
        {
            int flag=0;
            for(int j=0;j<n;j++)
            {
                if(use[j]==1)continue;
                if(b[j]>a[i])
                {
                    flag=1;
                    use[j]=1;
                    break;
                }
            }
            if(flag==0)
            {
                ans++;
                for(int j=0;j<n;j++)
                {
                    if(use[j]==0)
                    {
                        use[j]=1;
                        break;
                    }
                }
            }
        }
        printf("%d\n",n-ans);
    }
}


【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究(Matlab代码实现)内容概要:本文围绕【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究展开,重点介绍基于Matlab的代码实现方法。文章系统阐述了遍历理论的基本概念、动态模态分解(DMD)的数学原理及其与库普曼算子谱特性之间的内在联系,展示了如何通过数值计算手段分析非线性动力系统的演化行为。文中提供了完整的Matlab代码示例,涵盖数据驱动的模态分解、谱分析及可视化过程,帮助读者理解并复现相关算法。同时,文档还列举了多个相关的科研方向和技术应用场景,体现出该方法在复杂系统建模与分析中的广泛适用性。; 适合人群:具备一定动力系统、线性代数与数值分析基础,熟悉Matlab编程,从事控制理论、流体力学、信号处理或数据驱动建模等领域研究的研究生、博士生及科研人员。; 使用场景及目标:①深入理解库普曼算子理论及其在非线性系统分析中的应用;②掌握动态模态分解(DMD)算法的实现与优化;③应用于流体动力学、气候建模、生物系统、电力系统等领域的时空模态提取与预测;④支撑高水平论文复现与科研项目开发。; 阅读建议:建议读者结合Matlab代码逐段调试运行,对照理论推导加深理解;推荐参考文中提及的相关研究方向拓展应用场景;鼓励在实际数据上验证算法性能,并尝试改进与扩展算法功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值