Codeforces 344D Alternating Current【模拟】

本文介绍了一个有趣的编程问题——电线解缠挑战。通过一系列加号和减号表示电线的上下关系,利用栈模拟的方法来判断是否可以解开电线的缠绕。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Alternating Current
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Mad scientist Mike has just finished constructing a new device to search for extraterrestrial intelligence! He was in such a hurry to launch it for the first time that he plugged in the power wires without giving it a proper glance and started experimenting right away. After a while Mike observed that the wires ended up entangled and now have to be untangled again.

The device is powered by two wires "plus" and "minus". The wires run along the floor from the wall (on the left) to the device (on the right). Both the wall and the device have two contacts in them on the same level, into which the wires are plugged in some order. The wires are considered entangled if there are one or more places where one wire runs above the other one. For example, the picture below has four such places (top view):

Mike knows the sequence in which the wires run above each other. Mike also noticed that on the left side, the "plus" wire is always plugged into the top contact (as seen on the picture). He would like to untangle the wires without unplugging them and without moving the device. Determine if it is possible to do that. A wire can be freely moved and stretched on the floor, but cannot be cut.

To understand the problem better please read the notes to the test samples.

Input

The single line of the input contains a sequence of characters "+" and "-" of length n (1 ≤ n ≤ 100000). The i-th (1 ≤ i ≤ n) position of the sequence contains the character "+", if on the i-th step from the wall the "plus" wire runs above the "minus" wire, and the character "-" otherwise.

Output

Print either "Yes" (without the quotes) if the wires can be untangled or "No" (without the quotes) if the wires cannot be untangled.

Examples
Input
-++-
Output
Yes
Input
+-
Output
No
Input
++
Output
Yes
Input
-
Output
No
Note

The first testcase corresponds to the picture in the statement. To untangle the wires, one can first move the "plus" wire lower, thus eliminating the two crosses in the middle, and then draw it under the "minus" wire, eliminating also the remaining two crosses.

In the second testcase the "plus" wire makes one full revolution around the "minus" wire. Thus the wires cannot be untangled:

In the third testcase the "plus" wire simply runs above the "minus" wire twice in sequence. The wires can be untangled by lifting "plus" and moving it higher:

In the fourth testcase the "minus" wire runs above the "plus" wire once. The wires cannot be untangled without moving the device itself:

题目大意:

给你一堆+号和-号,两两相邻并且相同符号的就可以消去,问最终能否将所有线解开(将所有符号消去);


思路:


1、本题放在D题难度纯是难在读题上边。

2、本题就是一个栈模拟,很容易实现。


Ac代码:

#include<stdio.h>
#include<string.h>
#include<stack>
using namespace std;
char a[100500];
int main()
{
    while(~scanf("%s",a))
    {
        stack<char >s;
        int n=strlen(a);
        for(int i=0;i<n;i++)
        {
            if(s.size()==0)
            {
                s.push(a[i]);
            }
            else
            {
                if(s.top()==a[i])s.pop();
                else s.push(a[i]);
            }
        }
        if(s.size()==0)printf("Yes\n");
        else printf("No\n");
    }
}










### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值