Fxx and game
Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)Total Submission(s): 651 Accepted Submission(s): 155
Problem Description
Young theoretical computer scientist Fxx designed a game for his students.
In each game, you will get three integers X,k,t.In each step, you can only do one of the following moves:
1.X=X−i(0<=i<=t).
2.if k|X,X=X/k.
Now Fxx wants you to tell him the minimum steps to make X become 1.
In each game, you will get three integers X,k,t.In each step, you can only do one of the following moves:
1.X=X−i(0<=i<=t).
2.if k|X,X=X/k.
Now Fxx wants you to tell him the minimum steps to make X become 1.
Input
In the first line, there is an integer T(1≤T≤20) indicating
the number of test cases.
As for the following T lines, each line contains three integers X,k,t(0≤t≤106,1≤X,k≤106)
For each text case,we assure that it's possible to make X become 1。
As for the following T lines, each line contains three integers X,k,t(0≤t≤106,1≤X,k≤106)
For each text case,we assure that it's possible to make X become 1。
Output
For each test case, output the answer.
Sample Input
2 9 2 1 11 3 3
Sample Output
4 3
题目大意:
一共有两种操作,问将x变成1需要的最少操作次数:
①X=X-I(0<=I<=tt)
②X=X/K(X%k==0)
思路:
1、考虑dp,设定dp【i】表示我们从数字1变成数字i使用的最少操作次数,那么不难推出其状态转移方程:
dp【i】=min(dp【i/k】+1,dp【i】)(i此时是k的倍数)
dp【i】=min(dp【i-j】+1,dp【i】)【0<=j<=tt】
2、根据数据范围可知,此时第二种状态转移方程的时间复杂度将会是:O(x*t),最大能达到10^12,是一个很大的操作数量级,那么考虑单调队列优化即可。
Ac代码:
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
int dp[1000500];
int que[1000500];
int pos[1000500];
int main()
{
int tt;
scanf("%d",&tt);
while(tt--)
{
int x,k,t;
scanf("%d%d%d",&x,&k,&t);
int head=1;
int tot=1;
que[head]=0;
pos[head]=1;
memset(dp,0x3f3f3f3f,sizeof(dp));
dp[1]=0;
for(int i=2;i<=x;i++)
{
if(i%k==0)
{
dp[i]=min(dp[i/k]+1,dp[i]);
}
while(head<=tot&&pos[head]<i-t)head++;
dp[i]=min(dp[i],que[head]+1);
while(head<=tot&&dp[i]<que[tot])tot--;
que[++tot]=dp[i],pos[tot]=i;
}
printf("%d\n",dp[x]);
}
}