Codeforces 711D Directed Roads【Dfs+思维】

探讨了如何通过反转有向图中的边来消除所有有向环的方法,提供了一种有效的算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D. Directed Roads
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from 1 to n.

There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.

ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.

Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.

Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.

Input

The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.

Output

Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.

Examples
Input
3
2 3 1
Output
6
Input
4
2 1 1 1
Output
8
Input
5
2 4 2 5 3
Output
28
Note

Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are , , initially. Number the roads 1 to 3 in this order.

The sets of roads that ZS the Coder can flip (to make them not confusing) are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns 1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.

The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.

题目大意:

给你一个有向图,其中包含n个点以及n条边,我们可以将任意边反向,问当前图中有多少种方案数使得图中没有有向环。


思路:


1、首先我们Dfs整个图找环,并且统计出每个环中包含的点的个数(同时也就是包含的边的个数)。对应当前这个环来讲,不考虑其他部分,只考虑这个环的话,其可行方案(没有环)有:2^(环中点的个数)-2;其中减去的一个是当前有向环,另一个是将所有边反向的环。


2、那么我们对应将所有环的可行方案累乘,得到这个图中有环部分的可行方案,记做output。


3、那么我们再记录一下不在环中的点的个数,再令output*=2^(不在环中的点的个数);那么此时output就是最终答案。


Ac代码:


#include<stdio.h>
#include<string.h>
#include<vector>
using namespace std;
#define ll __int64
#define mod 1000000007
vector<int >mp[200040];
int vis[200040];
int dfn[200040];
int num[200040];
ll output,sum,n,sig,cnt;
ll poww(ll a,ll b)
{
    ll ans=1;
    a%=mod;
    while(b>0)
    {
        if(b%2==1)ans=(ans*a)%mod;
        b/=2;
        a=(a*a)%mod;
    }
    return ans;
}
void Dfs(int u)
{
    num[u]=cnt++;
    vis[u]=1;
    dfn[u]=sig;
    for(int i=0;i<mp[u].size();i++)
    {
        int v=mp[u][i];
        if(vis[v]==1&&dfn[v]==sig)
        {
            ll tot=num[u]-num[v]+1;
            output=(output*((poww(2,tot)-2)))%mod;
            sum+=tot;
        }
        if(vis[v]==0)
        Dfs(v);
    }
}
int main()
{
    while(~scanf("%I64d",&n))
    {
        for(int i=1;i<=n;i++)mp[i].clear();
        for(int i=1;i<=n;i++)
        {
            int x;
            scanf("%d",&x);
            mp[i].push_back(x);
        }
        memset(dfn,0,sizeof(dfn));
        memset(vis,0,sizeof(vis));
        output=1;
        cnt=1;
        sig=0;
        sum=0;
        for(int i=1;i<=n;i++)
        {
            if(vis[i]==0)
            {
                sig++;
                Dfs(i);
            }
        }
        output=(output*(poww(2,n-sum)))%mod;
        printf("%I64d\n",output%mod);
    }
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值