Codeforces 426 B Sereja and Mirroring【暴力枚举+模拟】水题

探讨如何寻找最小矩阵,通过镜像操作能还原给定的大矩阵。采用枚举与模拟的方法确定最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Sereja and Mirroring
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Let's assume that we are given a matrix b of size x × y, let's determine the operation of mirroring matrix b. The mirroring of matrix b is a 2x × y matrix c which has the following properties:

  • the upper half of matrix c (rows with numbers from 1 to x) exactly matches b;
  • the lower half of matrix c (rows with numbers from x + 1 to 2x) is symmetric to the upper one; the symmetry line is the line that separates two halves (the line that goes in the middle, between rows x and x + 1).

Sereja has an n × m matrix a. He wants to find such matrix b, that it can be transformed into matrix a, if we'll perform on it several (possibly zero) mirrorings. What minimum number of rows can such matrix contain?

Input

The first line contains two integers, n and m (1 ≤ n, m ≤ 100). Each of the next n lines contains m integers — the elements of matrix a. The i-th line contains integers ai1, ai2, ..., aim (0 ≤ aij ≤ 1) — the i-th row of the matrix a.

Output

In the single line, print the answer to the problem — the minimum number of rows of matrix b.

Examples
Input
4 3
0 0 1
1 1 0
1 1 0
0 0 1
Output
2
Input
3 3
0 0 0
0 0 0
0 0 0
Output
3
Input
8 1
0
1
1
0
0
1
1
0
Output
2
Note

In the first test sample the answer is a 2 × 3 matrix b:

001
110

If we perform a mirroring operation with this matrix, we get the matrix a that is given in the input:

001
110
110
001

题目大意:

给你一个N*M大的矩阵,让你找到最小的矩阵b(x*M),使得其景象之后能够得到原矩阵。

比如样例1:

001

110

110

001

就可以通过第一个2*M的矩阵:

001

110

镜像翻转之后得到:

110

001

拼接之后得到:

001

110

110

001

所以答案是2、


思路:


那么从小到大暴力枚举这个x,使得对x*2^y==n然后模拟镜像翻转过程即可。


Ac代码:

#include<stdio.h>
#include<string.h>
using namespace std;
int a[150][150];
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<m;j++)
            {
                scanf("%d",&a[i][j]);
            }
        }
        if(n%2==1)
        {
            printf("%d\n",n);
            continue;
        }
        else
        {
            for(int i=1;i<=n;i++)
            {
                if(n%i==0)
                {
                    int ok=0;
                    int tmp=i;
                    for(int j=0;;j++)
                    {
                        if(tmp==n)
                        {
                            ok=1;break;
                        }
                        if(tmp>n)
                        {
                            ok=0;
                            break;
                        }
                        tmp*=2;
                    }
                    if(ok==0)continue;
                    ok=1;
                    int x=0,y=0,flag=1;
                    for(int j=0;j<n;j++)
                    {
                        for(int k=0;k<m;k++)
                        {
                            if(a[j][k]==a[x][y])
                            {
                                if(flag==1)
                                {
                                    y++;
                                    if(y>=m)y=0,x++;
                                    if(x==i)
                                    {
                                        flag=0;
                                        x=i-1;y=0;
                                    }
                                }
                                else
                                {
                                    y++;
                                    if(y>=m)y=0,x--;
                                    if(x==-1)
                                    {
                                        flag=1;
                                        x=0;y=0;
                                    }
                                }
                            }
                            else ok=0;
                        }
                    }
                    if(ok==1)
                    {
                        printf("%d\n",i);break;
                    }
                }
            }
        }
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值