Task Schedule
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 7092 Accepted Submission(s): 2210
Problem Description
Our geometry princess XMM has stoped her study in computational geometry to concentrate on her newly opened factory. Her factory has introduced M new machines in order to process the coming N tasks. For the i-th task, the factory has to start processing it
at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted and processed on different
machines on different days.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
Input
On the first line comes an integer T(T<=20), indicating the number of test cases.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
Output
For each test case, print “Case x: ” first, where x is the case number. If there exists a feasible schedule to finish all the tasks, print “Yes”, otherwise print “No”.
Print a blank line after each test case.
Print a blank line after each test case.
Sample Input
2 4 3 1 3 5 1 1 4 2 3 7 3 5 9 2 2 2 1 3 1 2 2
Sample Output
Case 1: Yes Case 2: Yes
题目大意:
有t组数据,接下来一行两个元素,分别表示任务总数和机器数,每天每台机器只能对一台任务进行工作,并且一个工作也只能使用一台机器。
接下来那些行表示任务完成的总天数,起始天数和截止日期,问能否完成所有任务。
思路:
1、建立源点S,各个任务作为一个节点,从S连入,其边权值为任务完成需要的总天数,表示做这个任务需要这么些天。
然后建立每天为一个节点,每个任务节点连接对应期限天数,边权值都为1,表示如果当前任务选择了这一天去做,而且每个任务每天只能用一台机器,所以边权为1.
然后从每个天数节点汇到T,边权值为m,表示每天一共可以用m台机器。
2、跑一遍Dinic即可、如果最大流==所有任务的总天数和,那么就是能够完成所有任务。
Ac代码:
#include<stdio.h>
#include<string.h>
#include<queue>
#include<iostream>
using namespace std;
#define INF 0x3f3f3f3f
struct node
{
int from;
int to;
int w;
int next;
}e[10000000];
int cur[100005];
int divv[100005];
int head[100005];
int n,m,ss,tt,cont;
void add(int from,int to,int w)
{
e[cont].to=to;
e[cont].w=w;
e[cont].next=head[from];
head[from]=cont++;
}
int makedivv()
{
memset(divv,0,sizeof(divv));
divv[ss]=1;
queue<int >s;
s.push(ss);
while(!s.empty())
{
int u=s.front();
if(u==tt)return 1;
s.pop();
for(int i=head[u];i!=-1;i=e[i].next)
{
int v=e[i].to;
int w=e[i].w;
if(w&&divv[v]==0)
{
divv[v]=divv[u]+1;
s.push(v);
}
}
}
return 0;
}
int Dfs(int u,int maxflow,int tt)
{
if(tt==u)return maxflow;
int ret=0;
for(int &i=cur[u];i!=-1;i=e[i].next)
{
int v=e[i].to;
int w=e[i].w;
if(w&&divv[v]==divv[u]+1)
{
int f=Dfs(v,min(maxflow-ret,w),tt);
e[i].w-=f;
e[i^1].w+=f;
ret+=f;
if(ret==maxflow)return ret;
}
}
return ret;
}
int Dinic()
{
int ans=0;
while(makedivv()==1)
{
memcpy(cur,head,sizeof(head));
ans+=Dfs(ss,INF,tt);
}
return ans;
}
int main()
{
int t;
int kase=0;
scanf("%d",&t);
while(t--)
{
cont=0;
memset(head,-1,sizeof(head));
scanf("%d%d",&n,&m);
ss=0;
tt=100000;
int sum=0;
int minn=INF;
int maxn=-INF;
for(int i=1;i<=n;i++)
{
int p,b,e;
scanf("%d%d%d",&p,&b,&e);
sum+=p;
add(ss,i,p);
add(i,ss,0);
minn=min(minn,b);
maxn=max(maxn,e);
for(int j=b;j<=e;j++)
{
add(i,j+n,1);
add(j+n,i,0);
}
}
for(int i=minn;i<=maxn;i++)
{
add(i+n,tt,m);
add(tt,i+n,0);
}
int tmp=Dinic();
printf("Case %d: ",++kase);
if(tmp>=sum)
{
printf("Yes\n");
}
else printf("No\n");
printf("\n");
}
}