hdu 1546 Idiomatic Phrases Game【dijkstra】

Idiomatic Phrases Game

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3014    Accepted Submission(s): 973


Problem Description
Tom is playing a game called Idiomatic Phrases Game. An idiom consists of several Chinese characters and has a certain meaning. This game will give Tom two idioms. He should build a list of idioms and the list starts and ends with the two given idioms. For every two adjacent idioms, the last Chinese character of the former idiom should be the same as the first character of the latter one. For each time, Tom has a dictionary that he must pick idioms from and each idiom in the dictionary has a value indicates how long Tom will take to find the next proper idiom in the final list. Now you are asked to write a program to compute the shortest time Tom will take by giving you the idiom dictionary. 
 

Input
The input consists of several test cases. Each test case contains an idiom dictionary. The dictionary is started by an integer N (0 < N < 1000) in one line. The following is N lines. Each line contains an integer T (the time Tom will take to work out) and an idiom. One idiom consists of several Chinese characters (at least 3) and one Chinese character consists of four hex digit (i.e., 0 to 9 and A to F). Note that the first and last idioms in the dictionary are the source and target idioms in the game. The input ends up with a case that N = 0. Do not process this case. 
 

Output
One line for each case. Output an integer indicating the shortest time Tome will take. If the list can not be built, please output -1.
Sample Input
5
5 12345978ABCD2341
5 23415608ACBD3412
7 34125678AEFD4123
15 23415673ACC34123
4 41235673FBCD2156
2
20 12345678ABCD
30 DCBF5432167D
0
 


Sample Output
17
-1
 


Author
ZHOU, Ran
 

Source
 

题目大意:给你N个串,每个串都有其权值,从一个字符串的起点到终点需要其权值的消耗,问从第一个字符串的前四个字符到最后一个字符串前四个字符的最少消耗。

思路:我们可以把每一个字符串的前四个字符和后四个字符都看成一个点,然后进行最短路实现即可。N比较大,目测floyd会超时,所以选择dijkstra来实现最短路的部分。

另外大家有对于n==1的时候到底输出什么的疑惑,这里表示亲测无所谓,输出0也是AC,输出-1也是AC,所以估计后台应该是没有这组数据,所以我对于n==1的时候没有进行其他处理。

对于图的处理,我们遍历一遍即可:

        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                int len=strlen(a[i]);
                if(a[j][0] == a[i][len-4] && a[j][1] == a[i][len-3] &&a[j][2] == a[i][len-2]&&a[j][3] == a[i][len-1])w[i][j] = k[i];
                else w[i][j]=0x1f1f1f1f;
            }
        }
完整的AC代码:

#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
char a[1005][1005];
int w[1005][1005];
int vis[1005];
int d[1005];
int k[1005];
int n;
void Dij()
{
	int i,j,k,tmp;
	memset(vis,0,sizeof(vis));
	for(i=1;i<=n;i++)
	    d[i]=w[1][i];//当然是要起点开始走.
	d[1]=0;
	vis[1]=1;
	for(i=1;i<=n;i++)//为了连接多少点的控制.
	{
	    int v=-1;
		tmp=0x1f1f1f1f;
		for(j=1;j<=n;j++)
		{
			if(tmp>d[j]&&!vis[j])
			{
				tmp=d[j];
				v=j;
			}
		}//每次选中的都是距离起点最近的点.v
		if(v==-1)return ;
		vis[v]=1;
		for(k=1;k<=n;k++)
		{
			if(!vis[k])//然后松弛.
			d[k]=min(d[k],d[v]+w[v][k]);
		}
	}
}
int main()
{
    while(~scanf("%d",&n))
    {
        if(n==0)break;
        for(int i=1;i<=n;i++)
        {
            scanf("%d%s",&k[i],a[i]);
        }
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                int len=strlen(a[i]);
                if(a[j][0] == a[i][len-4] && a[j][1] == a[i][len-3] &&a[j][2] == a[i][len-2]&&a[j][3] == a[i][len-1])w[i][j] = k[i];
                else w[i][j]=0x1f1f1f1f;
            }
        }
        Dij();
        if(d[n]!=0x1f1f1f1f)
        printf("%d\n",d[n]);
        else
        printf("-1\n");
    }
}












考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化与经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本与能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参与调度等方面的有效性,为低碳能源系统的设计与运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模与优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建与求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发与仿真验证。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值