HDU——1546 Idiomatic Phrases Game (Dijkstra)最短路

本文介绍了一种基于字符串匹配的游戏算法实现,通过构建图模型并使用Dijkstra算法寻找从起始成语到目标成语的最短路径,适用于成语接龙游戏等场景。

Tom is playing a game called Idiomatic Phrases Game. An idiom consists of several Chinese characters and has a certain meaning. This game will give Tom two idioms. He should build a list of idioms and the list starts and ends with the two given idioms. For every two adjacent idioms, the last Chinese character of the former idiom should be the same as the first character of the latter one. For each time, Tom has a dictionary that he must pick idioms from and each idiom in the dictionary has a value indicates how long Tom will take to find the next proper idiom in the final list. Now you are asked to write a program to compute the shortest time Tom will take by giving you the idiom dictionary. 

Input

The input consists of several test cases. Each test case contains an idiom dictionary. The dictionary is started by an integer N (0 < N < 1000) in one line. The following is N lines. Each line contains an integer T (the time Tom will take to work out) and an idiom. One idiom consists of several Chinese characters (at least 3) and one Chinese character consists of four hex digit (i.e., 0 to 9 and A to F). Note that the first and last idioms in the dictionary are the source and target idioms in the game. The input ends up with a case that N = 0. Do not process this case. 

Output

One line for each case. Output an integer indicating the shortest time Tome will take. If the list can not be built, please output -1.

Sample Input

5
5 12345978ABCD2341
5 23415608ACBD3412
7 34125678AEFD4123
15 23415673ACC34123
4 41235673FBCD2156
2
20 12345678ABCD
30 DCBF5432167D
0

Sample Output

17
-1

题意: 讲真题意网上搜的,实在看不懂,就是用第一个字符串找最后一个,用第一个的最后4个字符找第二个的前4个字符,用第二个的后4个字符找第三个的前4个字符知道找到第n个,找到输出最短时间(也就是最短路),找不到输出-1

题解:关键就是建图,其它的就是模板了,第一次写,优先队列,所以赶紧来写个博客。

上代码:

#include <iostream>
#include <vector>
#include <queue>
#include <cstring>
using namespace std;
const int inf=0x3f3f3f3f;
const int MAX=1500;
int dis[MAX],vis[MAX];
int n;
struct hh{
	int u;
	int v;
	int w;
	friend bool operator<(hh a,hh b)// 优先队列,按什么排序;注意重载写小于号,不能写大于号
    {
        return a.w>b.w;//这里大于号是从小到大,小于号是从大到小
    }

}tmp;
vector <hh> vs[MAX];//用vector存图
struct ww{
	int x;
	string s;
}a[MAX];
void init(){//初始化
	memset(vis,0,sizeof(vis));
	memset(dis,inf,sizeof(dis));
	for (int i = 0; i <= n;i++){
		vs[i].clear();
	}
}
void add(int u,int v,int w){//存图
	tmp.u=u;
	tmp.v=v;
	tmp.w=w;
	vs[u].push_back(tmp);
}
void Dijkstra(){
	priority_queue<hh> q;
	dis[1]=0;
	hh tmp1,tmp2;
	tmp1.v=1;
	tmp1.w=0;
	q.push(tmp1);
	while(!q.empty()){//优先队列写的方法
		tmp1=q.top();
		q.pop();
		if(vis[tmp1.v])	continue;
		vis[tmp1.v]=1;
		if(dis[tmp1.v]==inf) break;
		for (vector<hh>::iterator it=vs[tmp1.v].begin();it!=vs[tmp1.v].end();it++){
			if(vis[it->v]) continue;
			if(dis[it->v]>dis[tmp1.v]+it->w){	
				tmp2.v=it->v;
				tmp2.w=dis[tmp1.v]+it->w;
				dis[it->v]=tmp2.w;
				q.push(tmp2);
			}
		}
	}
}
int main(){
	std::ios::sync_with_stdio(false);//为了加速cin和cout
	cin.tie(0);cout.tie(0);
	while(cin >> n , n){
		init();
		for (int i = 1; i <= n;i++){
			cin >> a[i].x >> a[i].s;
		}
		for (int i = 1; i <= n;i++){
			for (int j = 1; j <= n;j++){
                int l=a[i].s.size();
				if(a[i].s[l-4]==a[j].s[0]&&a[i].s[l-3]==a[j].s[1]&&a[i].s[l-2]==a[j].s[2]&&a[i].s[l-1]==a[j].s[3]){
				add(i,j,a[i].x);//连接图,也就是存图
				/*string s1=a[i].s;//这样写会超时,可能字符串的复制,耗时间较多吧
				string s2=a[j].s;
				int l=s2.size();
				if(s1[l-4]==s2[0]&&s1[l-3]==s2[1]&&s1[l-2]==s2[2]&&s1[l-1]==s2[3]){
					add(i,j,a[i].x);
				}*/
			    }
			}
		}
		Dijkstra();
		if(dis[n]!=inf) cout << dis[n] << endl;
		else cout << -1 << endl;//如果等于inf说明找不到,也就是他的初始值没变,如果找到,它会有一个时间,而不是初始值
	}
	return 0;
} 

 

下载方式:https://pan.quark.cn/s/a4b39357ea24 布线问题(分支限界算法)是计算机科学和电子工程领域中一个广为人知的议题,它主要探讨如何在印刷电路板上定位两个节点间短的连接路径。 在这一议题中,电路板被构建为一个包含 n×m 个方格的矩阵,每个方格能够被界定为可通行或不可通行,其核心任务是定位从初始点到终点的短路径。 分支限界算法是处理布线问题的一种常用策略。 该算法与回溯法有相似之处,但存在差异,分支限界法仅需获取满足约束条件的一个优路径,并按照广度优先或小成本优先的原则来探索解空间树。 树 T 被构建为子集树或排列树,在探索过程中,每个节点仅被赋予一次成为扩展节点的机会,且会一次性生成其全部子节点。 针对布线问题的解决,队列式分支限界法可以被采用。 从起始位置 a 出发,将其设定为首个扩展节点,并将与该扩展节点相邻且可通行的方格加入至活跃节点队列中,将这些方格标记为 1,即从起始方格 a 到这些方格的距离为 1。 随后,从活跃节点队列中提取队首节点作为下一个扩展节点,并将与当前扩展节点相邻且未标记的方格标记为 2,随后将这些方格存入活跃节点队列。 这一过程将持续进行,直至算法探测到目标方格 b 或活跃节点队列为空。 在实现上述算法时,必须定义一个类 Position 来表征电路板上方格的位置,其成员 row 和 col 分别指示方格所在的行和列。 在方格位置上,布线能够沿右、下、左、上四个方向展开。 这四个方向的移动分别被记为 0、1、2、3。 下述表格中,offset[i].row 和 offset[i].col(i=0,1,2,3)分别提供了沿这四个方向前进 1 步相对于当前方格的相对位移。 在 Java 编程语言中,可以使用二维数组...
### HDU OJ Problem 2566 Coin Counting Solution Using Simple Enumeration and Generating Function Algorithm #### 使用简单枚举求解硬币计数问题 对于简单的枚举方法,可以通过遍历所有可能的组合方式来计算给定面额下的不同硬币组合数量。这种方法虽然直观但效率较低,在处理较大数值时性能不佳。 ```java import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int[] coins = {1, 2, 5}; // 定义可用的硬币种类 while (scanner.hasNext()) { int targetAmount = scanner.nextInt(); int countWays = findNumberOfCombinations(targetAmount, coins); System.out.println(countWays); } } private static int findNumberOfCombinations(int amount, int[] denominations) { if (amount == 0) return 1; if (amount < 0 || denominations.length == 0) return 0; // 不使用当前面值的情况 int excludeCurrentDenomination = findNumberOfCombinations(amount, subArray(denominations)); // 使用当前面值的情况 int includeCurrentDenomination = findNumberOfCombinations(amount - denominations[0], denominations); return excludeCurrentDenomination + includeCurrentDenomination; } private static int[] subArray(int[] array) { if (array.length <= 1) return new int[]{}; return java.util.Arrays.copyOfRange(array, 1, array.length); } } ``` 此代码实现了通过递归来穷尽每一种可能性并累加结果的方式找到满足条件的不同组合数目[^2]。 #### 利用母函数解决硬币计数问题 根据定义,可以将离散序列中的每一个元素映射到幂级数的一个项上,并利用这些多项式的乘积表示不同的组合情况。具体来说: 设 \( f(x)=\sum_{i=0}^{+\infty}{a_i*x^i}\),其中\( a_i \)代表当总金额为 i 时能够组成的方案总数,则有如下表达式: \[f_1(x)=(1+x+x^2+...)\] 这实际上是一个几何级数,其封闭形式可写作: \[f_1(x)=\frac{1}{(1-x)}\] 同理,对于其他类型的硬币也存在类似的生成函数。因此整个系统的生成函数就是各个单独部分之积: \[F(x)=f_1(x)*f_2(x)...*f_n(x)\] 终目标是从 F(x) 中提取系数即得到所需的结果。下面给出基于上述理论的具体实现: ```cpp #include<iostream> using namespace std; const int MAXN = 1e4 + 5; int dp[MAXN]; void solve() { memset(dp, 0, sizeof(dp)); dp[0] = 1; // 初始化基础状态 int values[] = {1, 2, 5}, size = 3; for (int j = 0; j < size; ++j){ for (int k = values[j]; k <= 10000; ++k){ dp[k] += dp[k-values[j]]; } } } int main(){ solve(); int T; cin >> T; while(T--){ int n; cin>>n; cout<<dp[n]<<endl; } return 0; } ``` 这段 C++ 程序展示了如何应用动态规划技巧以及生成函数的概念高效地解决问题实例[^1]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心脏dance

如果解决了您的疑惑,谢谢打赏呦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值