杭电OJ1973/哈理工OJ1534 Prime Path(搜索)bfs

本文解析了一道关于寻找两个四位素数间最短转换路径的问题。通过广度优先搜索算法结合素数判断,实现了从一个素数到另一个素数的转换,每次只改变一位数字,并确保中间结果均为素数。


Prime Path

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 515    Accepted Submission(s): 337


Problem Description
The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices. 
— It is a matter of security to change such things every now and then, to keep the enemy in the dark.
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know!
—I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime!
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.

Now, the minister of finance, who had been eavesdropping, intervened.
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
— Hmm, in that case I need a computer program to minimize the cost. You don’t know some very cheap software gurus, do you?
—In fact, I do. You see, there is this programming contest going on. . .

Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.
1033
1733
3733
3739
3779
8779
8179
The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.
 

Input
One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).
 

Output
One line for each case, either with a number stating the minimal cost or containing the word Impossible.
 

Sample Input
3 1033 8179 1373 8017 1033 1033
 

Sample Output
6 7 0
 
这个题目还是有点坑的,无脑做题不细心的孩纸要注意咯~~~~~

这个题还是比较简单的。但是操作比较复杂,整理操作的时候容易出错,这里我们为了优化代码,耗时减少,我们打印素数表的时候使用快速打印的方式:

        for(int j=2;j<sqrt(max);j++)
        {
            if(Is_or[j]==0)//去掉合数的倍数.
            for(int k=j+j;k<=max;k+=j)//去掉倍数.(把这么些个合数的倍数都标记上这个数不是素数.)
            Is_or[k]=1;//这里表示合数为1 素数为0;
        }
我们有了素数表之后,就可以判断变化的数字是否是素数了。

我们这里利用广搜来做:

贴上完整的AC代码:

#include<stdio.h>
#include<queue>
#include<math.h>
#include<string.h>
using namespace std;
struct shusu
{
    int num[4];
    int output;
}now,nex;
#define max 10005
int Is_or[max];//0是素数
int mubiao[4];
int vis[10][10][10][10];//vis函数我们这里用四维.
char a[5];
char b[5];
void bfs()
{
    memset(vis,0,sizeof(vis));
    for(int i=0;i<4;i++)
    {
        now.num[i]=a[i]-'0';
        mubiao[i]=b[i]-'0';
    }
    now.output=0;
    vis[now.num[0]][now.num[1]][now.num[2]][now.num[3]]=1;
    queue<shusu>s;
    s.push(now);
    while(!s.empty())
    {
        now=s.front();
        //printf("%d%d%d%d",now.num[0],now.num[1],now.num[2],now.num[3]);
        if(now.num[0]==mubiao[0]&&now.num[1]==mubiao[1]&&now.num[2]==mubiao[2]&&now.num[3]==mubiao[3])
        {
            printf("%d\n",now.output);
            return ;
        }
        s.pop();
        for(int i=0;i<4;i++)
        {
            if(i==0)
            {
                for(int j=1;j<=9;j++)//这里注意,千位数字不能是0,如果有0,是会WA的.
                {
                    nex=now;
                    if(j!=now.num[0])
                    nex.num[0]=j;
                    int sum=nex.num[3]+10*nex.num[2]+100*nex.num[1]+1000*nex.num[0];
                    if(Is_or[sum]==0&&vis[nex.num[0]][nex.num[1]][nex.num[2]][nex.num[3]]==0)
                    {
                        //printf("%d\n",sum);
                        nex.output=now.output+1;
                        s.push(nex);
                        vis[nex.num[0]][nex.num[1]][nex.num[2]][nex.num[3]]=1;
                    }
                }
            }
            if(i==1)
            {
                for(int j=0;j<=9;j++)
                {
                    nex=now;
                    if(j!=now.num[1])
                    nex.num[1]=j;
                    int sum=nex.num[3]+10*nex.num[2]+100*nex.num[1]+1000*nex.num[0];
                    //printf("%d %d %d %d\n",nex.num[0],nex.num[1],nex.num[2],nex.num[3]);
                    if(Is_or[sum]==0&& vis[nex.num[0]][nex.num[1]][nex.num[2]][nex.num[3]]==0)
                    {
                        //printf("%d\n",sum);
                        nex.output=now.output+1;
                        s.push(nex);
                        vis[nex.num[0]][nex.num[1]][nex.num[2]][nex.num[3]]=1;
                    }
                }
            }
            if(i==2)
            {
                for(int j=0;j<=9;j++)
                {
                    nex=now;
                   if(j!=now.num[2])
                    nex.num[2]=j;
                    int sum=nex.num[3]+10*nex.num[2]+100*nex.num[1]+1000*nex.num[0];
                    if(Is_or[sum]==0&& vis[nex.num[0]][nex.num[1]][nex.num[2]][nex.num[3]]==0)
                    {
                        //printf("%d\n",sum);
                        nex.output=now.output+1;
                        s.push(nex);
                        vis[nex.num[0]][nex.num[1]][nex.num[2]][nex.num[3]]=1;
                    }
                }
            }
            if(i==3)
            {
                for(int j=0;j<=9;j++)
                {
                    nex=now;
                    if(j!=now.num[3])
                    nex.num[3]=j;
                    int sum=nex.num[3]+10*nex.num[2]+100*nex.num[1]+1000*nex.num[0];
                    if(Is_or[sum]==0&& vis[nex.num[0]][nex.num[1]][nex.num[2]][nex.num[3]]==0)
                    {
                       // printf("%d\n",sum);
                        nex.output=now.output+1;
                        s.push(nex);
                        vis[nex.num[0]][nex.num[1]][nex.num[2]][nex.num[3]]=1;
                    }
                }
            }
        }
    }
    printf("Impossible\n");
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
       scanf("%s%s",a,b);
        //秒打印素数表.
        for(int j=2;j<sqrt(max);j++)
        {
            if(Is_or[j]==0)//去掉合数的倍数.
            for(int k=j+j;k<=max;k+=j)//去掉倍数.(把这么些个合数的倍数都标记上这个数不是素数.)
            Is_or[k]=1;
        }
        //printf("%d %d\n",Is_or[1033],Is_or[1733]);
        bfs();
        /*for(int i=1;i<50;i++)
        {
            printf("%d ",Is_or[i]);
        }*/
    }
}



























"Mstar Bin Tool"是一款专门针对Mstar系列芯片开发的固件处理软件,主要用于智能电视及相关电子设备的系统维护与深度定制。该工具包特别标注了"LETV USB SCRIPT"模块,表明其对乐视品牌设备具有兼容性,能够通过USB通信协议执行固件读写操作。作为一款专业的固件编辑器,它允许技术人员对Mstar芯片的底层二进制文件进行解析、修改与重构,从而实现系统功能的调整、性能优化或故障修复。 工具包中的核心组件包括固件编译环境、设备通信脚本、操作界面及技术文档等。其中"letv_usb_script"是一套针对乐视设备的自动化操作程序,可指导用户完成固件烧录全过程。而"mstar_bin"模块则专门处理芯片的二进制数据文件,支持固件版本的升级、降级或个性化定制。工具采用7-Zip压缩格式封装,用户需先使用解压软件提取文件内容。 操作前需确认目标设备采用Mstar芯片架构并具备完好的USB接口。建议预先备份设备原始固件作为恢复保障。通过编辑器修改固件参数时,可调整系统配置、增删功能模块或修复已知缺陷。执行刷机操作时需严格遵循脚本指示的步骤顺序,保持设备供电稳定,避免中断导致硬件损坏。该工具适用于具备嵌入式系统知识的开发人员或高级用户,在进行设备定制化开发、系统调试或维护修复时使用。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值