48、优化算法研究:SSM与混合模拟退火算法

优化算法研究:SSM与混合模拟退火算法

在优化算法的研究领域,不断有新的算法和改进方案被提出,以解决各类复杂的优化问题。本文将介绍一种用于模因算法的间谍搜索机制(SSM),以及针对双目标二次分配问题(bQAP)的混合模拟退火算法(HSA)。

1. 间谍搜索机制(SSM)

1.1 SSM性能表现

实验表明,与其他现有方法相比,SSM在处理优化问题时表现更优。而且,问题变化的幅度越大,SSM的性能优势越明显。自适应爬山算法则对邻域个体进行细化优化。

1.2 未来研究方向

未来的工作可以考虑使用多个种群,探索基于记忆的方法。此外,利用提出的方法识别搜索环境的变化模式也是一个重要的研究方向。

2. 双目标二次分配问题(bQAP)与相关算法

2.1 bQAP问题描述

二次分配问题(QAP)是一个经典的NP难组合优化问题,其基本思想是找到设施到位置的最佳分配方案。该问题在现实世界中有诸多应用,如医院布局、键盘布局、背板布线和涡轮平衡等。

双目标QAP(bQAP)是单目标QAP向两个目标的多目标扩展。在bQAP中,有两个不同的流量矩阵与一个距离矩阵配对,目标是最小化函数$f(π) = (f^1(π), f^2(π))$,其中$f^k(π) = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij} a_{π_i π_j}^k$,$k = 2$。

2.2 相关算法介绍

  • 两阶段局部搜索(TPLS) :由Paquete和Stützle提出,是一种基于标量
个人防护装备实例分割数据集 一、基础信息 • 数据集名称:个人防护装备实例分割数据集 • 图片数量: 训练集:4524张图片 • 训练集:4524张图片 • 分类类别: 手套(Gloves) 头盔(Helmet) 未戴手套(No-Gloves) 未戴头盔(No-Helmet) 未穿鞋(No-Shoes) 未穿背心(No-Vest) 鞋子(Shoes) 背心(Vest) • 手套(Gloves) • 头盔(Helmet) • 未戴手套(No-Gloves) • 未戴头盔(No-Helmet) • 未穿鞋(No-Shoes) • 未穿背心(No-Vest) • 鞋子(Shoes) • 背心(Vest) • 标注格式:YOLO格式,适用于实例分割任务,包含边界框或多边形坐标。 • 数据格式:图片数据,来源于监控或相关场景。 二、适用场景 • 工业安全监控系统开发:用于自动检测工人是否佩戴必要的个人防护装备,提升工作场所安全性,减少工伤风险。 • 智能安防应用:集成到监控系统中,实时分析视频流,识别PPE穿戴状态,辅助安全预警。 • 合规性自动化检查:在建筑、制造等行业,自动检查个人防护装备穿戴合规性,支持企业安全审计。 • 计算机视觉研究:支持实例分割、目标检测等算法在安全领域的创新研究,促进AI模型优化。 三、数据集优势 • 类别全面:覆盖8种常见个人防护装备及其缺失状态,提供丰富的检测场景,确保模型能处理各种实际情况。 • 标注精准:采用YOLO格式,每个实例都经过精细标注,边界框或多边形坐标准确,提升模型训练质量。 • 真实场景数据:数据来源于实际环境,增强模型在真实世界中的泛化能力和实用性。 • 兼容性强:YOLO格式便于主流深度学习框架(如YOLO、PyTorch等)集成,支持快速部署和实验。
锈蚀实例分割数据集 一、基础信息 • 数据集名称:锈蚀实例分割数据集 • 图片数量: 训练集:4138张图片 验证集:211张图片 测试集:110张图片 总计:4459张图片 • 训练集:4138张图片 • 验证集:211张图片 • 测试集:110张图片 • 总计:4459张图片 • 分类类别: Rust(锈蚀):金属表面因氧化而产生的腐蚀现象。 Corrosion(腐蚀):材料因环境因素导致的劣化过程。 • Rust(锈蚀):金属表面因氧化而产生的腐蚀现象。 • Corrosion(腐蚀):材料因环境因素导致的劣化过程。 • 标注格式:YOLO格式,提供实例分割标注,适用于锈蚀区域的精确分割。 • 数据格式:JPEG图片数据,来源于实际应用场景。 二、适用场景 • 工业视觉检测系统开发:用于构建能够自动识别和分割金属表面锈蚀的AI模型,提升检测效率和准确性。 • 基础设施维护风险评估:在建筑、能源、运输等领域,评估结构锈蚀损坏,辅助预防性维护决策。 • 制造业质量控制:集成到生产流程中,实时检测产品表面腐蚀缺陷,确保产品质量。 • 学术研究创新:支持计算机视觉材料科学交叉领域的研究,促进锈蚀检测技术的进步。 三、数据集优势 • 精确实例分割标注:每个标注均提供多边形边界,确保锈蚀区域定位准确,适用于细节分析和模型训练。 • 类别针对性强:专注于锈蚀和腐蚀检测,数据内容高度相关,减少无关噪声,提升模型专注度。 • 充足的数据规模:拥有数千张训练图片,为深度学习模型提供充分样本,支持稳健性能。 • 兼容性易用性:YOLO标注格式兼容主流深度学习框架,如YOLO、Detectron2等,便于快速集成和部署。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值