数据集——个人收集的目标检测数据集待续更新

1、鸟类检测

鸟类识别目标检测,只有bird一个类别,标注格式xml和txt两种,标注工具是labelImg,数据数量4849张,可用于yolo目标检测。
xml格式如下:

<annotation>
	<folder>bird1</folder>
	<filename>捕食的鸟_0.jpg</filename>
	<path>bird\捕食的鸟_0.jpg</path>
	<source>
		<database>Unknown</database>
	</source>
	<size>
		<width>1080</width>
		<height>1424</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>bird</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>397</xmin>
			<ymin>105</ymin>
			<xmax>871</xmax>
			<ymax>988</ymax>
		</bndbox>
	</object>
</annotation>

txt格式如下:

0 0.0693815987933635 0.3286445012787724 0.1297134238310709 0.18670076726342713
0 0.2450980392156863 0.592071611253197 0.1493212669683258 0.2225063938618926
0 0.11463046757164405 0.7161125319693096 0.1568627450980392 0.2915601023017903
0 0.07390648567119155 0.9079283887468031 0.10256410256410257 0.1790281329923274
0 0.40950226244343896 0.8542199488491049 0.15837104072398192 0.1534526854219949
0 0.5105580693815989 0.3900255754475704 0.16742081447963802 0.16112531969309465
0 0.7420814479638009 0.6662404092071612 0.18401206636500755 0.28900255754475707
0 0.9539969834087482 0.5549872122762148 0.07692307692307693 0.19437340153452687

在这里插入图片描述
数据集下载地址:https://download.youkuaiyun.com/download/matt45m/90358867?spm=1001.2014.3001.5503

2、 无人机目标检测

无人机目标检测,只有无人机一个类别,标注格式xml,标注工具是labelImg,数据数量1097张,可以使用脚本把xml转成txt或者json格式的标签,可用于yolo目标检测。

<annotation>
	<folder>drone _ Google_da Ara</folder>
	<filename>pic_518.png</filename>
	<path>C:\Users\mehdi\Downloads\ss\drone _ Google_da Ara\pic_518.png</path>
	<source>
		<database>Unknown</database>
	</source>
	<size>
		<width>400</width>
		<height>300</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>drone</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>64</xmin>
			<ymin>115</ymin>
			<xmax>200</xmax>
			<ymax>172</ymax>
		</bndbox>
	</object>
	<object>
		<name>drone</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>191</xmin>
			<ymin>129</ymin>
			<xmax>283</xmax>
			<ymax>166</ymax>
		</bndbox>
	</object>
	<object>
		<name>drone</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>188</xmin>
			<ymin>178</ymin>
			<xmax>334</xmax>
			<ymax>234</ymax>
		</bndbox>
	</object>
	<object>
		<name>drone</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>130</xmin>
			<ymin>248</ymin>
			<xmax>267</xmax>
			<ymax>292</ymax>
		</bndbox>
	</object>
	<object>
		<name>drone</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>88</xmin>
			<ymin>203</ymin>
			<xmax>170</xmax>
			<ymax>241</ymax>
		</bndbox>
	</object>
	<object>
		<name>drone</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>20</xmin>
			<ymin>193</ymin>
			<xmax>77</xmax>
			<ymax>237</ymax>
		</bndbox>
	</object>
	<object>
		<name>drone</name>
		<pose>Unspecified</pose>
		<truncated>1</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>137</xmin>
			<ymin>1</ymin>
			<xmax>288</xmax>
			<ymax>55</ymax>
		</bndbox>
	</object>
	<object>
		<name>drone</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>245</xmin>
			<ymin>105</ymin>
			<xmax>377</xmax>
			<ymax>165</ymax>
		</bndbox>
	</object>
	<object>
		<name>drone</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>319</xmin>
			<ymin>243</ymin>
			<xmax>399</xmax>
			<ymax>299</ymax>
		</bndbox>
	</object>
	<object>
		<name>drone</name>
		<pose>Unspecified</pose>
		<truncated>1</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>250</xmin>
			<ymin>272</ymin>
			<xmax>310</xmax>
			<ymax>300</ymax>
		</bndbox>
	</object>
	<object>
		<name>drone</name>
		<pose>Unspecified</pose>
		<truncated>1</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>1</xmin>
			<ymin>249</ymin>
			<xmax>83</xmax>
			<ymax>300</ymax>
		</bndbox>
	</object>
	<object>
		<name>drone</name>
		<pose>Unspecified</pose>
		<truncated>1</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>1</xmin>
			<ymin>45</ymin>
			<xmax>134</xmax>
			<ymax>116</ymax>
		</bndbox>
	</object>
	<object>
		<name>drone</name>
		<pose>Unspecified</pose>
		<truncated>1</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>307</xmin>
			<ymin>27</ymin>
			<xmax>400</xmax>
			<ymax>107</ymax>
		</bndbox>
	</object>
</annotation>

在这里插入图片描述
数据集地址:https://download.youkuaiyun.com/download/matt45m/90359135

3 、道路缺陷检测

道路缺陷检测,标注道路上有坑洼,标注格式xml,标注工具是labelImg,数据数量1097张,可以使用脚本把xml转成txt或者json格式的标签,可用于yolo目标检测,用于无人机道路检测维修。
xml数据格式如下:

<annotation>
	<folder>dataset</folder>
	<filename>img-411.jpg</filename>
	<path>/CSE-800/Thesis/2020-01-23/dataset/img-411.jpg</path>
	<source>
		<database>Unknown</database>
	</source>
	<size>
		<width>442</width>
		<height>300</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>pothole</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>201</xmin>
			<ymin>216</ymin>
			<xmax>299</xmax>
			<ymax>271</ymax>
		</bndbox>
	</object>
	<object>
		<name>pothole</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>209</xmin>
			<ymin>137</ymin>
			<xmax>289</xmax>
			<ymax>165</ymax>
		</bndbox>
	</object>
	<object>
		<name>pothole</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>252</xmin>
			<ymin>112</ymin>
			<xmax>316</xmax>
			<ymax>131</ymax>
		</bndbox>
	</object>
	<object>
		<name>pothole</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>266</xmin>
			<ymin>94</ymin>
			<xmax>311</xmax>
			<ymax>106</ymax>
		</bndbox>
	</object>
	<object>
		<name>pothole</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>212</xmin>
			<ymin>104</ymin>
			<xmax>268</xmax>
			<ymax>121</ymax>
		</bndbox>
	</object>
	<object>
		<name>pothole</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>154</xmin>
			<ymin>122</ymin>
			<xmax>198</xmax>
			<ymax>135</ymax>
		</bndbox>
	</object>
	<object>
		<name>pothole</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>157</xmin>
			<ymin>111</ymin>
			<xmax>193</xmax>
			<ymax>122</ymax>
		</bndbox>
	</object>
	<object>
		<name>pothole</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>196</xmin>
			<ymin>97</ymin>
			<xmax>219</xmax>
			<ymax>104</ymax>
		</bndbox>
	</object>
	<object>
		<name>pothole</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>244</xmin>
			<ymin>87</ymin>
			<xmax>277</xmax>
			<ymax>95</ymax>
		</bndbox>
	</object>
	<object>
		<name>pothole</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>228</xmin>
			<ymin>80</ymin>
			<xmax>263</xmax>
			<ymax>88</ymax>
		</bndbox>
	</object>
	<object>
		<name>pothole</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>26</xmin>
			<ymin>214</ymin>
			<xmax>70</xmax>
			<ymax>241</ymax>
		</bndbox>
	</object>
	<object>
		<name>pothole</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>257</xmin>
			<ymin>69</ymin>
			<xmax>281</xmax>
			<ymax>76</ymax>
		</bndbox>
	</object>
	<object>
		<name>pothole</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>139</xmin>
			<ymin>100</ymin>
			<xmax>174</xmax>
			<ymax>110</ymax>
		</bndbox>
	</object>
</annotation>

在这里插入图片描述
数据集下载地址:https://download.youkuaiyun.com/download/matt45m/90359155

4、 地上烟头检测

地上烟头目标检测,标注格式xml,标注工具是labelImg,数据数量1023张,可以使用脚本把xml转成txt或者json格式的标签,可用于深度学习计算机视觉目标检测,数据质量并不是很高。
标签统计结果:Bud: 1063

数据格式如下:

<annotation>
	<folder></folder>
	<filename>IMG_3231_png.rf.96f0f5fce3dfb25d09bb4f728b3e80ff.jpg</filename>
	<path>IMG_3231_png.rf.96f0f5fce3dfb25d09bb4f728b3e80ff.jpg</path>
	<source>
		<database>roboflow.ai</database>
	</source>
	<size>
		<width>1536</width>
		<height>2048</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>Bud</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<occluded>0</occluded>
		<bndbox>
			<xmin>366</xmin>
			<xmax>610</xmax>
			<ymin>827</ymin>
			<ymax>1096</ymax>
		</bndbox>
	</object>
	<object>
		<name>Bud</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<occluded>0</occluded>
		<bndbox>
			<xmin>513</xmin>
			<xmax>666</xmax>
			<ymin>771</ymin>
			<ymax>1037</ymax>
		</bndbox>
	</object>
	<object>
		<name>Bud</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<occluded>0</occluded>
		<bndbox>
			<xmin>739</xmin>
			<xmax>821</xmax>
			<ymin>476</ymin>
			<ymax>792</ymax>
		</bndbox>
	</object>
</annotation>

在这里插入图片描述
数据集下载地址:https://download.youkuaiyun.com/download/matt45m/90359300

5、 骑车行人与安全帽检测

骑在车上的行人与行人佩戴安全帽检测,只标注骑在车上的人与安全头盔,标注格式xml,标注工具是labelImg,数据数量5448张,可以使用脚本把xml转成txt或者json格式的标签,可用于深度学习计算机视觉目标检测。
标注统计:

two_wheeler: 16759
helmet: 15348
without_helmet: 7876

数据格式:

<annotation>
		<filename>0005.jpg</filename>
		<object>
			<name>helmet</name>
			<ID>0</ID>
			<bndbox>
				<xmin>819</xmin>
				<ymin>672</ymin>
				<xmax>881</xmax>
				<ymax>738</ymax>
			</bndbox>
		</object>
		<object>
			<name>helmet</name>
			<ID>0</ID>
			<bndbox>
				<xmin>898</xmin>
				<ymin>682</ymin>
				<xmax>960</xmax>
				<ymax>748</ymax>
			</bndbox>
		</object>
		<object>
			<name>helmet</name>
			<ID>2</ID>
			<bndbox>
				<xmin>1460</xmin>
				<ymin>612</ymin>
				<xmax>1479</xmax>
				<ymax>632</ymax>
			</bndbox>
		</object>
		<object>
			<name>without_helmet</name>
			<ID>3</ID>
			<bndbox>
				<xmin>1566</xmin>
				<ymin>605</ymin>
				<xmax>1580</xmax>
				<ymax>619</ymax>
			</bndbox>
		</object>
		<object>
			<name>without_helmet</name>
			<ID>4</ID>
			<bndbox>
				<xmin>460</xmin>
				<ymin>680</ymin>
				<xmax>484</xmax>
				<ymax>707</ymax>
			</bndbox>
		</object>
		<object>
			<name>without_helmet</name>
			<ID>5</ID>
			<bndbox>
				<xmin>354</xmin>
				<ymin>686</ymin>
				<xmax>372</xmax>
				<ymax>720</ymax>
			</bndbox>
		</object>
		<object>
			<name>without_helmet</name>
			<ID>6</ID>
			<bndbox>
				<xmin>1235</xmin>
				<ymin>622</ymin>
				<xmax>1250</xmax>
				<ymax>642</ymax>
			</bndbox>
		</object>
		<object>
			<name>two_wheeler</name>
			<ID>3</ID>
			<bndbox>
				<xmin>1542</xmin>
				<ymin>601</ymin>
				<xmax>1605</xmax>
				<ymax>713</ymax>
			</bndbox>
		</object>
		<object>
			<name>two_wheeler</name>
			<ID>5</ID>
			<bndbox>
				<xmin>267</xmin>
				<ymin>685</ymin>
				<xmax>414</xmax>
				<ymax>886</ymax>
			</bndbox>
		</object>
		<object>
			<name>two_wheeler</name>
			<ID>4</ID>
			<bndbox>
				<xmin>376</xmin>
				<ymin>676</ymin>
				<xmax>556</xmax>
				<ymax>875</ymax>
			</bndbox>
		</object>
		<object>
			<name>two_wheeler</name>
			<ID>2</ID>
			<bndbox>
				<xmin>1443</xmin>
				<ymin>611</ymin>
				<xmax>1505</xmax>
				<ymax>714</ymax>
			</bndbox>
		</object>
		<object>
			<name>two_wheeler</name>
			<ID>6</ID>
			<bndbox>
				<xmin>1198</xmin>
				<ymin>616</ymin>
				<xmax>1286</xmax>
				<ymax>758</ymax>
			</bndbox>
		</object>
		<object>
			<name>two_wheeler</name>
			<ID>0</ID>
			<bndbox>
				<xmin>789</xmin>
				<ymin>670</ymin>
				<xmax>1095</xmax>
				<ymax>1071</ymax>
			</bndbox>
		</object>
	</annotation>

在这里插入图片描述
数据集下载地址,数据太大分两部分,部分一有完全的标签,部分2只有图像,part1下载地址:https://download.youkuaiyun.com/download/matt45m/90359276
部分2下载地址:https://download.youkuaiyun.com/download/matt45m/90359282

6、 安全帽检测

施工现在行人与行人佩戴安全帽检测,标注了行人、没有带安全帽的人头、佩带安全帽的人头,标注格式txt,标注工具是labelImg,数据数量7492张,可用于深度学习计算机视觉目标检测,目标标签:person,head,helmet。
数据格式:

1 0.7019444444444445 0.16388657214345287 0.012777777777777779 0.020850708924103418
1 0.5152777777777777 0.6697247706422018 0.08388888888888889 0.15679733110925773
1 0.1388888888888889 0.9161801501251042 0.13777777777777778 0.16763969974979148
1 0.21083333333333334 0.5412844036697247 0.07388888888888889 0.1267723102585488
1 0.03888888888888889 0.46121768140116765 0.06222222222222222 0.08673894912427023
1 0.017777777777777778 0.40575479566305256 0.03333333333333333 0.0658882402001668
1 0.0225 0.33694745621351124 0.035 0.04670558798999166
1 0.011944444444444445 0.3653044203502919 0.02277777777777778 0.04670558798999166
1 0.07388888888888889 0.3427856547122602 0.03777777777777778 0.04837364470391994
1 0.04694444444444444 0.3010842368640534 0.021666666666666667 0.0316930775646372
1 0.135 0.3794829024186822 0.043333333333333335 0.058381984987489574
1 0.12666666666666668 0.34612176814011675 0.04111111111111111 0.05504587155963303
1 0.08944444444444444 0.30984153461217684 0.028888888888888888 0.03586321934945788
1 0.12194444444444444 0.29482902418682233 0.029444444444444443 0.0408673894912427
1 0.18444444444444444 0.4591326105087573 0.07444444444444444 0.08924103419516263
1 0.1786111111111111 0.4011676396997498 0.04388888888888889 0.06505421184320268
1 0.175 0.3494578815679733 0.03222222222222222 0.043369474562135114
1 0.17555555555555555 0.32276897414512096 0.02666666666666667 0.0316930775646372
1 0.15388888888888888 0.3211009174311927 0.025555555555555557 0.03836530442035029
1 0.16805555555555557 0.29065888240200166 0.026111111111111113 0.029190992493744787
1 0.21166666666666667 0.29065888240200166 0.028888888888888888 0.0408673894912427
1 0.23194444444444445 0.3219349457881568 0.02722222222222222 0.04670558798999166
1 0.2425 0.28982485404503755 0.019444444444444445 0.03419516263552961
1 0.2608333333333333 0.3603002502085071 0.03277777777777778 0.0567139282735613
1 0.2875 0.3615512927439533 0.03277777777777778 0.05087572977481234
1 0.28444444444444444 0.41743119266055045 0.044444444444444446 0.0658882402001668
1 0.3388888888888889 0.4487072560467056 0.052222222222222225 0.07673060884070058
1 0.42055555555555557 0.47831526271893243 0.058888888888888886 0.08590492076730609
1 0.33944444444444444 0.5817347789824854 0.0811111111111111 0.1359466221851543
1 0.5263888888888889 0.5471226021684737 0.06277777777777778 0.11009174311926606
1 0.6683333333333333 0.5834028356964137 0.057777777777777775 0.10758965804837364
1 0.6388888888888888 0.4870725604670559 0.051111111111111114 0.08340283569641367
1 0.5452777777777778 0.45287739783152625 0.03944444444444444 0.07339449541284404
1 0.7516666666666667 0.5312760633861552 0.056666666666666664 0.0884070058381985
1 0.7613888888888889 0.42285237698081735 0.03277777777777778 0.0633861551292744
1 0.8266666666666667 0.4774812343619683 0.04 0.06422018348623854
1 0.8036111111111112 0.41618015012510423 0.028333333333333332 0.05504587155963303
1 0.8583333333333333 0.45579649708090075 0.03111111111111111 0.05587989991659716
1 0.8902777777777777 0.43202668890742285 0.03388888888888889 0.05504587155963303
1 0.9227777777777778 0.41284403669724773 0.027777777777777776 0.04837364470391994
1 0.8908333333333334 0.38281901584653877 0.02388888888888889 0.041701417848206836
1 0.9411111111111111 0.3919933277731443 0.027777777777777776 0.041701417848206836
1 0.9583333333333334 0.3832360300250208 0.022222222222222223 0.03753127606338615
1 0.9913888888888889 0.3440366972477064 0.013888888888888888 0.03753127606338615
1 0.9772222222222222 0.37531276063386154 0.01888888888888889 0.030025020850708923
1 0.9230555555555555 0.3035863219349458 0.019444444444444445 0.0316930775646372
1 0.8844444444444445 0.3394495412844037 0.022222222222222223 0.040033361134278564
1 0.8675 0.30525437864887406 0.019444444444444445 0.0316930775646372
1 0.8541666666666666 0.31609674728940784 0.01611111111111111 0.030025020850708923
1 0.8355555555555556 0.2902418682235196 0.016666666666666666 0.02335279399499583
1 0.8372222222222222 0.33194328607172646 0.017777777777777778 0.03502919099249374
1 0.8208333333333333 0.3386155129274395 0.017222222222222222 0.0316930775646372
1 0.8552777777777778 0.3632193494578816 0.020555555555555556 0.03586321934945788
1 0.8402777777777778 0.390325271059216 0.029444444444444443 0.041701417848206836
1 0.7933333333333333 0.34612176814011675 0.02 0.03836530442035029
1 0.7769444444444444 0.35279399499582986 0.02277777777777778 0.030025020850708923
1 0.7708333333333334 0.3302752293577982 0.018333333333333333 0.030025020850708923
1 0.7875 0.286488740617181 0.015 0.02418682235195997
1 0.7555555555555555 0.37906588824020016 0.028888888888888888 0.045871559633027525
1 0.74 0.35529608006672225 0.02 0.041701417848206836
1 0.735 0.3240200166805671 0.014444444444444444 0.03419516263552961
1 0.7333333333333333 0.3060884070058382 0.02 0.026688907422852376
1 0.7172222222222222 0.2773144286905755 0.017777777777777778 0.02418682235195997
1 0.6966666666666667 0.3469557964970809 0.025555555555555557 0.03669724770642202
1 0.7141666666666666 0.40158465387823183 0.03166666666666667 0.04920767306088407
1 0.6711111111111111 0.41284403669724773 0.035555555555555556 0.0567139282735613
1 0.6527777777777778 0.37447873227689743 0.021111111111111112 0.041701417848206836
1 0.6402777777777777 0.3548790658882402 0.019444444444444445 0.027522935779816515
1 0.6611111111111111 0.3394495412844037 0.021111111111111112 0.03336113427856547
1 0.6808333333333333 0.29524603836530444 0.015 0.0316930775646372
1 0.6861111111111111 0.2718932443703086 0.013333333333333334 0.020016680567139282
1 0.7013888888888888 0.28065054211843204 0.015 0.02585487906588824
1 0.6625 0.2602168473728107 0.017222222222222222 0.02335279399499583
1 0.6433333333333333 0.2944120100083403 0.015555555555555555 0.025020850708924104
1 0.6344444444444445 0.2785654712260217 0.014444444444444444 0.021684737281067557
1 0.6144444444444445 0.32151793160967473 0.015555555555555555 0.030859049207673062
1 0.6113888888888889 0.2910758965804837 0.015 0.025020850708924104
1 0.6033333333333334 0.2618849040867389 0.015555555555555555 0.025020850708924104
1 0.5875 0.34528773978315264 0.020555555555555556 0.03669724770642202
1 0.59 0.3273561301084237 0.01888888888888889 0.02585487906588824
1 0.5780555555555555 0.29774812343619683 0.017222222222222222 0.02335279399499583
1 0.57 0.2706422018348624 0.013333333333333334 0.02585487906588824
1 0.5486111111111112 0.26688907422852376 0.013888888888888888 0.026688907422852376
1 0.5269444444444444 0.29316096747289405 0.01611111111111111 0.02418682235195997
1 0.5444444444444444 0.3060884070058382 0.013333333333333334 0.025020850708924104
1 0.5163888888888889 0.31067556296914095 0.02277777777777778 0.02585487906588824
1 0.5280555555555555 0.365721434528774 0.029444444444444443 0.0408673894912427
1 0.5247222222222222 0.3957464553794829 0.029444444444444443 0.05254378648874062
1 0.4519444444444444 0.3886572143452877 0.04055555555555555 0.061718098415346125
1 0.6308333333333334 0.42660550458715596 0.03944444444444444 0.05921601334445371
1 0.37833333333333335 0.3865721434528774 0.03777777777777778 0.06922435362802336
1 0.41833333333333333 0.35529608006672225 0.03111111111111111 0.05170975813177648
1 0.4336111111111111 0.3482068390325271 0.019444444444444445 0.0475396163469558
1 0.4525 0.3211009174311927 0.017222222222222222 0.030025020850708923
1 0.46444444444444444 0.3127606338615513 0.023333333333333334 0.03669724770642202
1 0.4872222222222222 0.29357798165137616 0.015555555555555555 0.02335279399499583
1 0.47888888888888886 0.2793994995829858 0.016666666666666666 0.025020850708924104
1 0.4625 0.2764804003336113 0.01611111111111111 0.02585487906588824
1 0.44805555555555554 0.28523769808173477 0.013888888888888888 0.025020850708924104
1 0.43777777777777777 0.30817347789824856 0.017777777777777778 0.03252710592160134
1 0.425 0.2902418682235196 0.015555555555555555 0.030025020850708923
1 0.4077777777777778 0.2919099249374479 0.017777777777777778 0.026688907422852376
1 0.3933333333333333 0.30400333611342784 0.01888888888888889 0.029190992493744787
1 0.39166666666666666 0.28023352793994993 0.014444444444444444 0.025020850708924104
1 0.33416666666666667 0.32527105921601335 0.02722222222222222 0.04670558798999166
1 0.3688888888888889 0.31859883236030023 0.022222222222222223 0.03836530442035029
1 0.3686111111111111 0.28523769808173477 0.026111111111111113 0.03669724770642202
1 0.2997222222222222 0.30400333611342784 0.029444444444444443 0.0408673894912427
1 0.28555555555555556 0.2910758965804837 0.022222222222222223 0.030025020850708923
1 0.2733333333333333 0.30817347789824856 0.027777777777777776 0.03753127606338615
1 0.3413888888888889 0.2964970809007506 0.02277777777777778 0.03586321934945788
0 0.427222 0.543786 0.0888889 0.213511
0 0.0433333 0.845288 0.0866667 0.29608
0 0.761944 0.454545 0.075 0.130108
0 0.666389 0.68849 0.142778 0.316097
0 0.223333 0.607173 0.116667 0.255213
0 0.373611 0.688073 0.166111 0.338616
0 0.1875 0.90784 0.286111 0.174312
0 0.530556 0.786072 0.181111 0.384487

在这里插入图片描述
数据集下载地址:https://download.youkuaiyun.com/download/matt45m/90359595

7、水面垃圾目标检测

水面垃圾目标检测,标注格式xml,标注工具是labelImg,数据数量2400张,可以使用脚本把xml转成txt或者json格式的标签,可用于深度学习计算机视觉目标检测。数据质量不是很高,是用几百张原始数据增强做成2000多张。
标注统计:
bottle: 1691
branch: 434
plastic-bag: 411
leaf: 267
milk-box: 255
plastic-garbage: 202
grass: 201
ball: 49

数据格式如下:

<annotation>
	<folder>JPEGImages</folder>
	<filename>001938.jpg</filename>
	<path>/home/zbr/VOCdevkit/VOC2007/JPEGImages/001938.jpg</path>
	<source>
		<database>Unknown</database>
	</source>
	<size>
		<width>416</width>
		<height>416</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>bottle</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>234</xmin>
			<ymin>244</ymin>
			<xmax>316</xmax>
			<ymax>283</ymax>
		</bndbox>
	</object>
	<object>
		<name>plastic-garbage</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>332</xmin>
			<ymin>172</ymin>
			<xmax>389</xmax>
			<ymax>226</ymax>
		</bndbox>
	</object>
	<object>
		<name>bottle</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>331</xmin>
			<ymin>315</ymin>
			<xmax>381</xmax>
			<ymax>363</ymax>
		</bndbox>
	</object>
	<object>
		<name>plastic-garbage</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>43</xmin>
			<ymin>191</ymin>
			<xmax>109</xmax>
			<ymax>220</ymax>
		</bndbox>
	</object>
</annotation>

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知来者逆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值