又一种证明根号2是无理数的方法

本文介绍了证明根号2为无理数的一种新方法,通过探讨有限小数及不同进制下小数的表现形式,揭示了为什么任何形如(n/m)²的表达都不可能等于2。

    今天的最后一篇日志了,仍然是翻译的cut-the-knot。发完我就睡觉去了。

    这里已经有五种证明根号2是无理数的方法了。现在我们算是介绍第六种方法了。
    一个有限小数的平方绝对不可能变成整数,因为小数部分不可能消失。观察有限小数的小数部分最后一个数字你会发现结论是显然的,平方后它总会产生新的“最后一位”。
    下面证明,(n/m)^2不可能等于2。n/m不可能是整数,于是把它写成小数形式,而有限小数的平方不可能是整数。如果n/m不是有限小数的话,可以把它转换成另外的进制使得n/m是有限小数,因而上面的结论仍然成立。一个进制下的无限小数可能是另一个进制下的有限小数。比如,把分数n/m转化为m进制,得到的小数肯定是有限小数。

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值