Steffen可活动多面体

本文介绍了多面体的稳定性问题,包括Cauchy定理及其限制条件,以及可活动多面体的存在性。通过实际制作一个可活动多面体的例子,展示了其独特的性质。
部署运行你感兴趣的模型镜像

    大家都知道,三角形具有稳定性。如果你把三根木条钉成一个三角形,则这几根木条是不能活动的。这是因为,根据三角形的SSS全等判定法则,两个三角形的三边长对应相等,则这两个三角形一定全等。但四边形就不是了,用四根一样长的木条钉成一个正方形,握着相对的两个角往两边一拉,正方形就变成菱形了。不知道大家想过没有,类比到三维空间中,多面体的稳定性又是怎样的呢?
    Cauchy定理指出,如果两个凸多面体对应的面全等,那么这两个多面体全等。这告诉我们,任何一个凸多面体一定都是不可活动的。在Cauchy定理中,“凸多面体”这一条件是必需的。如果允许凹的多面体存在,对应面相等但整个多面体不全等的形状可以很轻易地构造出来。例如,想象立方体的某个面中心有一个小金字塔,这个金字塔既可以是向外凸的(就像表面上的一根刺),也可以是向内凹的(表面上的一个坑);这是两个截然不同的多面体,但它们的对应面都是相等的。不过,这与我们的稳定性并没有关系,因为它并不是做连续的变形,而是直接一下就“跳”过来了。
    很长一段时间,人们曾经猜想,不存在可以做出连续变形且保持所有面不变的“可活动多面体”(Flexible Polyhedron)。1978年,Connelly找到了第一个反例。他给出了一个由18个面组成的可活动多面体。


   
    Proofs from THE BOOK的第12章给出了Cauchy定理的一个非常精巧的证明,并在这一章末尾给出了一个更加简单的可活动多面体(上图),它是由Klaus Steffen构造出来的,只含有14个面和9个顶点,现在已经证明是“最简单”的可活动多面体。如果你按图中所标注的比例裁剪一张展开图,拼接成一个多面体的话,你可以捏着它的一条棱拽来拽去的玩。

 
  

    你猜怎么着?我还就真做了一个!我把这个pdf文件打印在了一张稍微硬一点的纸上,然后按图示粘贴成了一个可活动的多面体。标了黑线的地方应该往外折,蓝线则应该往内折。做好后捏在手里玩了一下,嘿,还真他妈的可以动!

您可能感兴趣的与本文相关的镜像

Yolo-v8.3

Yolo-v8.3

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

内容概要:本文档介绍了基于3D FDTD(时域有限差分)方法在MATLAB平台上对微带线馈电的矩形天线进行仿真分析的技术方案,重点在于模拟超MATLAB基于3D FDTD的微带线馈矩形天线分析[用于模拟超宽带脉冲通过线馈矩形天线的传播,以计算微带结构的回波损耗参数]宽带脉冲信号通过天线结构的传播过程,并计算微带结构的回波损耗参数(S11),以评估天线的匹配性能和辐射特性。该方法通过建立三维电磁场模型,精确求解麦克斯韦方程组,适用于高频电磁仿真,能够有效分析天线在宽频带内的响应特性。文档还提及该资源属于一个涵盖多个科研方向的综合性MATLAB仿真资源包,涉及通信、信号处理、电力系统、机器学习等多个领域。; 适合人群:具备电磁场与微波技术基础知识,熟悉MATLAB编程及数值仿真的高校研究生、科研人员及通信工程领域技术人员。; 使用场景及目标:① 掌握3D FDTD方法在天线仿真中的具体实现流程;② 分析微带天线的回波损耗特性,优化天线设计参数以提升宽带匹配性能;③ 学习复杂电磁问题的数值建模与仿真技巧,拓展在射频与无线通信领域的研究能力。; 阅读建议:建议读者结合电磁理论基础,仔细理解FDTD算法的离散化过程和边界条件设置,运行并调试提供的MATLAB代码,通过调整天线几何尺寸和材料参数观察回波损耗曲线的变化,从而深入掌握仿真原理与工程应用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值