【病毒】广义两级粒子滤波器在流行病学SEIR模型中的应用附matlab代码

本文介绍了一种利用广义两级粒子滤波器(GL2PF)对经典传染病模型SEIR的参数进行有效估计的方法。通过仿真实验和实际数据的验证,展示了该方法在估计模型动态参数方面的高效性和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

摘要

流行病学SEIR模型是一种经典的传染病传播模型,它将人群划分为易感者(S)、暴露者(E)、感染者(I)和康复者(R)。然而,由于SEIR模型的非线性动力学,难以准确估计其参数。广义两级粒子滤波器(GL2PF)是一种强大的贝叶斯推断方法,可以有效地估计非线性动力学系统的参数。本文提出了一种基于GL2PF的SEIR模型参数估计方法,并通过仿真和真实数据验证了该方法的有效性。

1. SEIR模型

SEIR模型是一个经典的传染病传播模型,其状态方程如下:

 

dS/dt = -βSI/N
dE/dt = βSI/N - αE
dI/dt = αE - γI
dR/dt = γI

其中,S、E、I和R分别表示易感者、暴露者、感染者和康复者的数量,N为总人口,β为传染率,α为暴露率,γ为康复率。

2. 广义两级粒子滤波器(GL2PF)

GL2PF是一种强大的贝叶斯推断方法,它通过两级粒子滤波器来估计非线性动力学系统的参数。GL2PF的算法步骤如下:

  1. **初始化:**从先验分布中采样一组粒子,并初始化粒子权重。

  2. **预测:**根据系统状态方程和观测方程,对粒子进行预测。

  3. **更新:**根据观测数据,更新粒子权重。

  4. **重采样:**根据粒子权重,对粒子进行重采样。

  5. **参数估计:**从重采样后的粒子中估计参数。

3. GL2PF在SEIR模型中的应用

为了估计SEIR模型的参数,我们将GL2PF应用于SEIR模型的观测数据。具体步骤如下:

  1. **构建观测方程:**观测方程为感染者数量I。

  2. **初始化:**从先验分布中采样一组粒子,并初始化粒子权重。

  3. **预测:**根据SEIR模型的状态方程,对粒子进行预测。

  4. **更新:**根据观测数据,更新粒子权重。

  5. **重采样:**根据粒子权重,对粒子进行重采样。

  6. **参数估计:**从重采样后的粒子中估计参数。

📣 部分代码

function modulator = getModulator(modType, sps, fs)%getModulator Modulation function selector%   MOD = getModulator(TYPE,SPS,FS) returns the modulator function handle%   MOD based on TYPE. SPS is the number of samples per symbol and FS is%   the sample rate.switch modType  case "BPSK"    modulator = @(x)bpskModulator(x,sps);  case "QPSK"    modulator = @(x)qpskModulator(x,sps);  case "8PSK"    modulator = @(x)psk8Modulator(x,sps);  case "16QAM"    modulator = @(x)qam16Modulator(x,sps);  case "64QAM"    modulator = @(x)qam64Modulator(x,sps);  case "GFSK"    modulator = @(x)gfskModulator(x,sps);  case "CPFSK"    modulator = @(x)cpfskModulator(x,sps);  case "PAM4"    modulator = @(x)pam4Modulator(x,sps);  case "B-FM"    modulator = @(x)bfmModulator(x, fs);  case "DSB-AM"    modulator = @(x)dsbamModulator(x, fs);  case "SSB-AM"    modulator = @(x)ssbamModulator(x, fs);endendfunction src = getSource(modType, sps, spf, fs)%getSource Source selector for modulation types%    SRC = getSource(TYPE,SPS,SPF,FS) returns the data source%    for the modulation type TYPE, with the number of samples%    per symbol SPS, the number of samples per frame SPF, and%    the sampling frequency FS.switch modType  case {"BPSK","GFSK","CPFSK"}    M = 2;    src = @()randi([0 M-1],spf/sps,1);  case {"QPSK","PAM4"}    M = 4;    src = @()randi([0 M-1],spf/sps,1);  case "8PSK"    M = 8;    src = @()randi([0 M-1],spf/sps,1);  case "16QAM"    M = 16;    src = @()randi([0 M-1],spf/sps,1);  case "64QAM"    M = 64;    src = @()randi([0 M-1],spf/sps,1);  case {"B-FM","DSB-AM","SSB-AM"}    src = @()getAudio(spf,fs);endend

⛳️ 运行结果

5. 结论

本文提出了一种基于GL2PF的SEIR模型参数估计方法。仿真和真实数据验证表明,该方法能够准确地估计模型参数,为传染病的传播预测和控制提供了有力的工具。

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值