不同颜色空间中的鲁棒边缘检测附matlab代码

文章提出了一种稳健的进化计算为基础的边缘检测系统,该系统结合预处理和后处理技术,如滤波器和形态学操作,并应用了修改版的蚁群优化算法来处理图像边缘。研究的独特之处在于使用色彩和深度图像数据,特别是在深度数据中理解边缘检测的概念。系统在多种颜色空间下对标准测试图像进行测试,并通过多种图像质量评估因素验证其性能,表现出优于其他著名边缘检测方法的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

Edge detection is very important technique to reveal significant areas in the digital image, which

could aids the feature extraction techniques. In fact it is possible to remove un-necessary parts from image, using edge detection. A lot of edge detection techniques has been made already, but we propose a robust evolutionary based system to extract the vital parts of the image. System is based on a lot of preand post-processing techniques such as filters and morphological operations, and applying modified Ant Colony Optimization edge detection method to the image. The main goal is to test the system on different color spaces, and calculate the system’s performance. Another novel aspect of the research is using depth images along with color ones, which depth data is acquired by Kinect V.2 in validation part, to understand edge detection concept better in depth data. System is going to be tested with 10 benchmark test images for color and 5 images for depth format, and validate using 7 Image Quality Assessment factors such as Peak Signal-to-Noise Ratio, Mean Squared Error, Structural Similarity and more (mostly related to edges) for prove, in different color spaces and compared with other famous edge detection methods in same condition. Also for evaluating the robustness of the system, some types of noises such as Gaussian, Salt and pepper, Poisson and Speckle are added to images, to shows proposed system power in any condition. The goal is reaching to best edges possible and to do this, more computation is needed, which increases run time computation just a bit more. But with today’s systems this time is decreased to minimum, which is worth it to make such a system. Acquired results are sopromising and satisfactory in compare with other methods available in validation section of the paper..

⛄ 部分代码

clc;

clear;

img=imread('teapot.jpg');

org=img;

img=imbinarize(img);

se1 = strel('disk',1);

se2 = strel('disk',3);

erodedBW = imerode(img,se1);

closeBW = imclose(erodedBW,se2);

subplot(1,4,1)

subimage(org); title('Original');

subplot(1,4,2)

subimage(img);title('BW');

subplot(1,4,3)

subimage(erodedBW); title('SE= Disc, Erode');

subplot(1,4,4)

subimage(closeBW); title('SE=Disc, Closing');

⛄ 运行结果

⛄ 参考文献

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值