在城市交通电气化进程快速推进的同时,与之相应的能耗增长和负面效应也 在迅速增加。城市轨道交通中的快速增长的能耗给城轨交通的可持续性发展带来 负担。2018 年,北京、上海、广州地铁负荷占全市总负荷的 1.5%-2.5%,成为了 城市电网的最大单体负荷[1]。在“双碳”政策下,城轨系统换用ATO 驾驶模式、 光伏+地铁等方法都取得了较好的减碳节能效果。城轨系统的需求侧响应可以在 保证乘客满意度的情况下降低牵引能耗成本[2],可进一步发掘城轨系统减碳节 能的潜力。
在列车运行过程中,列车与外界会产生各种摩擦,进而消耗列车牵引的能量。 列车运行过程中,被考虑的因素较多,如列车与轨道的摩擦、列车受到的空气阻 力、列车势能的变化、列车运行过程中的位置限速等。在同一段旅途中,列车使 用不同的驾驶策略通常会产生不同的能量和时间的消耗。
单列车在两个站台之间的运行过程如图一所示。

图一.单列车运行过程
问题1
假设一辆列车在水平轨道上运行,从站台A运行至站台B,其间距为5144.7m, 运行的速度上限为100km/h,列车质量为176.3t,列车旋转部件惯性的旋转质量 因数p = 1.08 ,列车电机的最大牵引力为310KN,机械制动部件的最大制动力为 760KN。列车受到的阻力满足Davi
本文探讨了城市轨道交通中的能耗问题,提出通过ATO驾驶模式和需求侧响应降低牵引能耗。研究了列车在不同驾驶策略下能量消耗的差异,并以一个案例详细解释了如何建立数学模型来优化列车速度、牵引力、制动力、时间和能量消耗的曲线。考虑路况、电机动态特性以及突发情况对列车运行的影响,设计了节能运行方案。问题涉及列车速度轨迹的调整以适应不同到站时间需求,以及在线优化策略应对延误情况。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



