【lssvm回归预测】基于麻雀算法优化最小二乘支持向量机SSA-LSSVM实现风电数据回归预附Matlab源码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机  电力系统

⛄ 内容介绍

本文提出一种麻雀算法优化基于最小二乘支持向量机的数据预测方法。LSSVM 是一种新型机器学习算法,其在传统支持向量机 SVM 基础上,将二次规划问题中的不等式约束改为等式约束,极大地方便了求解过程,克服了数据集粗糙、数据集波动性大等问题造成的异常回归,能有效避免 BP 神经网络等方法中出现的局部最优等问题。

麻雀搜索算法( sparrow search algorithm,SSA) 是新群智能优化算法,具有良好的全局搜索能力和 快速收敛性。与其他群智能算法一样来源于对生物体觅食情况的观察,麻雀种群在觅食过程中分为 两个部分: 发现者和加入者。发现者负责搜索食物 并为种群中的其他个体提供觅食区域和方向,通常 是具有高能源储备的个体,其所对应的适应度函数 值更优。加入者对应为适应度函数值较差的个体, 它们通过发现者留下的信息获得食物。适应度值 最差的部分麻雀找不到食物,为了寻找到食物它们 可能跳出当前的搜索区域,到其他的地方觅食。种 群中的每只麻雀都会监视其他同伴的行为,并且部 分麻雀会攻击摄取量较高的同伴争夺资源。当种 群中个别麻雀发现捕食者后发出报警信号,一旦报 警值大于安全值时发现者会把加入者带到其他安 全的区域觅食。种群中发现者和加入者的总数和比例不变,但 是两者的身份是动态变化的。寻找到更好的食物 来源的任何一只麻雀都可能变成发现者,此时其所 对应的适应度值变优,与此同时必然会有一只麻雀变成加入者,其适应度值变差。加入者的能量值越 低,在搜索范围内的位置对自己越不利越不容易找 到食物,这些极其渴望得到食物的麻雀可能飞到别的领域觅食,从而使自己获得能量。在整个觅食的过程中,加入者能搜索到能量更高的发现者,从而 获得食物或者伺机夺取食物。当意识到可能有危险时,为了获得更安全的位 置,种群边缘的麻雀快速向安全范围内移动,而在 种群中间的麻雀随机走动靠近其他的同伴。

算法流程如下:

步骤1,采集时间序列的样本数据;

步骤2,建立基于麻雀搜索算法优化参数的LSSVM数据预测模型;

步骤3,应用预测模型对训练样本进行预测,得到训练样本的相对误差和预测值;步骤4,预测模型对训练样本的相对误差进行预测,从而得到相对误差的预测值;步骤5,对相对误差的预测值进行校正,从而得到预测速率;解决了由于最小二乘支持向量机核函数参数和惩罚参数的经验性赋值而导致的预测精度不足的问题.

⛄ 部分代码

%_________________________________________________________________________%

% 麻雀优化算法             %

%_________________________________________________________________________%

function [Best_pos,Best_score,curve]=SSA(pop,Max_iter,lb,ub,dim,fobj)

ST = 0.6;%预警值

PD = 0.7;%发现者的比列,剩下的是加入者

SD = 0.2;%意识到有危险麻雀的比重

PDNumber = pop*PD; %发现者数量

SDNumber = pop - pop*PD;%意识到有危险麻雀数量

if(max(size(ub)) == 1)

   ub = ub.*ones(1,dim);

   lb = lb.*ones(1,dim);  

end

%种群初始化

X0=initialization(pop,dim,ub,lb);

X = X0;

%计算初始适应度值

fitness = zeros(1,pop);

for i = 1:pop

   fitness(i) =  fobj(X(i,:));

end

 [fitness, index]= sort(fitness);%排序

BestF = fitness(1);

WorstF = fitness(end);

GBestF = fitness(1);%全局最优适应度值

for i = 1:pop

    X(i,:) = X0(index(i),:);

end

curve=zeros(1,Max_iter);

GBestX = X(1,:);%全局最优位置

X_new = X;

for i = 1: Max_iter

    

    BestF = fitness(1);

    WorstF = fitness(end);

    

    R2 = rand(1);

   for j = 1:PDNumber

      if(R2<ST)

          X_new(j,:) = X(j,:).*exp(-j/(rand(1)*Max_iter));

      else

          X_new(j,:) = X(j,:) + randn()*ones(1,dim);

      end     

   end

   for j = PDNumber+1:pop

%        if(j>(pop/2))

        if(j>(pop - PDNumber)/2 + PDNumber)

          X_new(j,:)= randn().*exp((X(end,:) - X(j,:))/j^2);

       else

          %产生-1,1的随机数

          A = ones(1,dim);

          for a = 1:dim

            if(rand()>0.5)

                A(a) = -1;

            end

          end 

          AA = A'*inv(A*A');     

          X_new(j,:)= X(1,:) + abs(X(j,:) - X(1,:)).*AA';

       end

   end

   Temp = randperm(pop);

   SDchooseIndex = Temp(1:SDNumber); 

   for j = 1:SDNumber

       if(fitness(SDchooseIndex(j))>BestF)

           X_new(SDchooseIndex(j),:) = X(1,:) + randn().*abs(X(SDchooseIndex(j),:) - X(1,:));

       elseif(fitness(SDchooseIndex(j))== BestF)

           K = 2*rand() -1;

           X_new(SDchooseIndex(j),:) = X(SDchooseIndex(j),:) + K.*(abs( X(SDchooseIndex(j),:) - X(end,:))./(fitness(SDchooseIndex(j)) - fitness(end) + 10^-8));

       end

   end

   %边界控制

   for j = 1:pop

       for a = 1: dim

           if(X_new(j,a)>ub)

               X_new(j,a) =ub(a);

           end

           if(X_new(j,a)<lb)

               X_new(j,a) =lb(a);

           end

       end

   end 

   %更新位置

   for j=1:pop

    fitness_new(j) = fobj(X_new(j,:));

   end

   for j = 1:pop

    if(fitness_new(j) < GBestF)

       GBestF = fitness_new(j);

        GBestX = X_new(j,:);   

    end

   end

   X = X_new;

   fitness = fitness_new;

    %排序更新

   [fitness, index]= sort(fitness);%排序

   BestF = fitness(1);

   WorstF = fitness(end);

   for j = 1:pop

      X(j,:) = X(index(j),:);

   end

   curve(i) = GBestF;

end

Best_pos =GBestX;

Best_score = curve(end);

end

⛄ 运行结果

⛄ 参考文献

[1]王克奇, 杨少春, 戴天虹,等. 采用遗传算法优化最小二乘支持向量机参数的方法[J]. 计算机应用与软件, 2009, 26(7):3.

[2]赵铁成, 谢丽蓉, 范协诚,等. 基于VMD与改进麻雀算法优化LSSVM的多晶硅生产能耗预测[J]. 新疆大学学报(自然科学版), 2022(039-004).

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值