【图像分割】基于灰狼算法优化Renyi熵实现图像多阈值分割附Matlab代码

该博客介绍了将Renyi熵法应用于图像多级阈值分割的问题,通过引入灰狼优化算法来减少计算时间并提高分割效率。实验结果表明,这种方法能够有效进行图像的多级分割,并显著降低了计算时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 内容介绍

在图像阈值分割方法中,Renyi熵法因其显著效能而得到大量应用.为了更好地发挥Renyi熵在图像分割中的应用,提出把Renyi熵法扩展到图像多级阈值化问题.然而,由于计算时间复杂度上的高要求,很难把这种有效的技术推广到复杂图像多级阈值化问题.为减少本方法的计算时间,应用灰狼优化算法实施最佳阈值的搜索.实验结果表明,本方法能有效地对图像进行多级分割,并且显著降低计算时间.

2 部分代码

% Grey Wolf Optimizer

function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fhandle,fnonlin)

% initialize alpha, beta, and delta_pos

Alpha_pos=zeros(1,dim);

Alpha_score=inf; %change this to -inf for maximization problems

Beta_pos=zeros(1,dim);

Beta_score=inf; %change this to -inf for maximization problems

Delta_pos=zeros(1,dim);

Delta_score=inf; %change this to -inf for maximization problems

%Initialize the positions of search agents

Positions=initialization(SearchAgents_no,ub,lb);

Convergence_curve=zeros(1,Max_iter);

l=0;% Loop counter

% Main loop

while l<Max_iter

    for i=1:size(Positions,1)  

        

       % Return back the search agents that go beyond the boundaries of the search space

        Flag4ub=Positions(i,:)>ub;

        Flag4lb=Positions(i,:)<lb;

        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;               

        

        %% Calculate objective function for each search agent

        fitness=Fun(fhandle,fnonlin,Positions(i,:));  

        

        %% Update Alpha, Beta, and Delta

        if fitness<Alpha_score 

            Alpha_score=fitness; % Update alpha

            Alpha_pos=Positions(i,:);

        end

        

        if fitness>Alpha_score && fitness<Beta_score 

            Beta_score=fitness; % Update beta

            Beta_pos=Positions(i,:);

        end

        

        if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score 

            Delta_score=fitness; % Update delta

            Delta_pos=Positions(i,:);

        end

    end

    

    

    a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0

    

    % Update the Position of search agents including omegas

    for i=1:size(Positions,1)

        for j=1:size(Positions,2)     

                       

            r1=rand(); % r1 is a random number in [0,1]

            r2=rand(); % r2 is a random number in [0,1]

            

            A1=2*a*r1-a; % Equation (3.3)

            C1=2*r2; % Equation (3.4)

            

            D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1

            X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1

                       

            r1=rand();

            r2=rand();

            

            A2=2*a*r1-a; % Equation (3.3)

            C2=2*r2; % Equation (3.4)

            

            D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2

            X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2       

            

            r1=rand();

            r2=rand(); 

            

            A3=2*a*r1-a; % Equation (3.3)

            C3=2*r2; % Equation (3.4)

            

            D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3

            X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3             

            

            Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)

            

        end

    end

    l=l+1;    

    Convergence_curve(l)=Alpha_score;

end

3 运行结果

4 参考文献

[1]聂方彦, 张平凤, 潘梅森,等. 基于Renyi熵与PSO算法的图像多级阈值分割[J]. 湖南文理学院学报:自然科学版, 2013, 25(3):6.

博主简介:擅长智能优化算法神经网络预测信号处理元胞自动机图像处理路径规划无人机雷达通信无线传感器等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值