【预测模型-RBF】基于径向基神经网络实现数据分类附matlab代码

1 内容介绍

随着现代信息技术的迅速发展,许多领域都积累了大量的数据。我们渴望发现潜在于这些数据中的知识与规律。正是这一需求造就了数据挖掘学科的兴起及数据挖掘技术的发展。作为一个多学科交叉的综合性领域,数据挖掘涉及了数据库、统计学、机器学习、高性能计算、模式识别、神经网络和数据可视化等学科。数据分类与预测作为一种重要的挖掘技术有着广泛的应用。在这一研究方向,目前已提出了多种分类方法(如决策树归纳分类、贝叶斯分类、神经网络分类和K-最邻近分类等)和一些预测技术(如线性回归、非线性回归等)。然而,尚未发现有一种方法对所有数据的处理都优于其他方法[1]。 由于时间序列数据库的日趋庞大及其挖掘的潜在意义,目前,时序数据挖掘研究已成为一个热点;然而,时间序列数据的非线性混沌特点,使得对它的挖掘成为难题。本文在分析与比较以上几种分类及预测方法的基础上,引入了径向基函数神经网络(Radial Basis Function Neural Network,简称RBFNN)对时间序列数据进行预测。

2 仿真代码

%%  清空环境变量

warning off             % 关闭报警信息

close all               % 关闭开启的图窗

clear                   % 清空变量

clc                     % 清空命令行

%%  导入数据

res = xlsread('数据集.xlsx');

%%  划分训练集和测试集

temp = randperm(357);

P_train = res(temp(1: 240), 1: 12)';

T_train = res(temp(1: 240), 13)';

M = size(P_train, 2);

P_test = res(temp(241: end), 1: 12)';

T_test = res(temp(241: end), 13)';

N = size(P_test, 2);

%%  数据归一化

[p_train, ps_input] = mapminmax(P_train, 0, 1);

p_test  = mapminmax('apply', P_test, ps_input);

t_train = ind2vec(T_train);

t_test  = ind2vec(T_test );

3 运行结果

4 参考文献

[1]胡浩民. 基于RBF神经网络并行学习模型的数据分类及预测研究[D]. 上海师范大学, 2003.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值